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• Deductive system to prove invariants of hybrid systems 

•  Representability of HS (hybrid programs) 

• Platzer’s Differential Dynamic Logic 

• Sequent calculus for this logic

Objectives of  this lecture
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A hybrid automaton is:

Recap’ on hybrid automata



M = {on, off}
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• a set M of modes
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V = {x, c, T}
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E = {turn on, turn off}
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A hybrid automaton is:

• a set M of modes

• a set V of variables 
• a set E of events

Recap’ on hybrid automata



s(turn off) = on 
s(turn on) = off 
t(turn off) = off 
t(turn on) = on
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A hybrid automaton is:

• a set M of modes

• a set V of variables 
• a set E of events 
• source and target functions


s, t : E ⟶ M

Recap’ on hybrid automata
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Foff(x, c, T, t) = (−0.1x,0,0)

Fon(x, c, T, t) = (4c − 0.1x,0,0)

A hybrid automaton is:

• a set M of modes

• a set V of variables 
• a set E of events 
• source and target functions


• for every mode m, a flow function

Fm : ℝV × ℝ ⟶ ℝV

s, t : E ⟶ M
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Foff(x, c, T, t) = (−0.1x,0,0)

Fon(x, c, T, t) = (4c − 0.1x,0,0)

x(t) = cst exp(−0.1t)
c = cst, T = cst

x(t) = 40c + cst exp(−0.1t)
c = cst, T = cst

A hybrid automaton is:

• a set M of modes

• a set V of variables 
• a set E of events 
• source and target functions


• for every mode m, a flow function

Fm : ℝV × ℝ ⟶ ℝV

s, t : E ⟶ M

Recap’ on hybrid automata



Ioff = {(x, c, T ) ∣ x ≥ T − 2}

Ion = {(x, c, T ) ∣ x ≤ T + 2}
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A hybrid automaton is:

• a set M of modes

• a set V of variables 
• a set E of events 
• source and target functions


• for every mode m, a flow function


• for every mode m, an invariant predicate

Fm : ℝV × ℝ ⟶ ℝV

Im ⊆ ℝV

s, t : E ⟶ M
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A hybrid automaton is:

• a set M of modes

• a set V of variables 
• a set E of events 
• source and target functions


• for every mode m, a flow function


• for every mode m, an invariant predicate


• for every event e, a guard predicate


Fm : ℝV × ℝ ⟶ ℝV

Im ⊆ ℝV

s, t : E ⟶ M

Ge ⊆ ℝV

Gturn off = {(x, c, T ) ∣ x > T + 1}

Gturn on = {(x, c, T ) ∣ x < T − 1}
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A hybrid automaton is:

• a set M of modes

• a set V of variables 
• a set E of events 
• source and target functions


• for every mode m, a flow function


• for every mode m, an invariant predicate


• for every event e, a guard predicate


• for every event e, a jump relation


Fm : ℝV × ℝ ⟶ ℝV

Im ⊆ ℝV

s, t : E ⟶ M

Ge ⊆ ℝV

Je ⊆ ℝV × ℝV

Jturn off = {(x, c, T, x′�, c′�, T′�) ∣ x = x′� ∧ c = c′� ∧ T = T′�}

Jturn on = {(x, c, T, x′�, c′ �, T′�) ∣ x = x′� ∧ c′ � ∈ {1,2,3} ∧ T′� ∈ [15,30]}
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I0,on = {(x, c, T ) ∣ x ≤ T ∧ c ∈ {1,2,3} ∧ T ∈ [15,30]}

A hybrid automaton is:

• a set M of modes

• a set V of variables 
• a set E of events 
• source and target functions


• for every mode m, a flow function


• for every mode m, an invariant predicate


• for every event e, a guard predicate


• for every event e, a jump relation


• for every mode m, an initial predicate


Fm : ℝV × ℝ ⟶ ℝV
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Verification of  hybrid systems

Goal: prove that the system is not going 
wrong 

This means proving some properties on 
the set of  

reachable configurations



A configuration is an element of the form


An initial configuration is a configuration

          such that             .


A valid configuration is a configuration

          such that           .

(m, ω) ∈ M × ℝV

ω ∈ I0,m(m, ω)

(m, ω) ω ∈ Im

Configurations of  a hybrid automaton

A hybrid automaton is:

• a set M of modes

• a set V of variables 
• a set E of events 
• source and target functions


• for every mode m, a flow function


• for every mode m, an invariant predicate


• for every event e, a guard predicate


• for every event e, a jump relation


• for every mode m, an initial predicate


Fm : ℝV × ℝ ⟶ ℝV

Im ⊆ ℝV

s, t : E ⟶ M

Ge ⊆ ℝV

Je ⊆ ℝV × ℝV

I0,m ⊆ ℝV
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Discrete transitions of  HA

A hybrid automaton is:

• a set M of modes

• a set V of variables 
• a set E of events 
• source and target functions


• for every mode m, a flow function


• for every mode m, an invariant predicate


• for every event e, a guard predicate


• for every event e, a jump relation


• for every mode m, an initial predicate


Fm : ℝV × ℝ ⟶ ℝV

Im ⊆ ℝV

s, t : E ⟶ M

Ge ⊆ ℝV

Je ⊆ ℝV × ℝV

I0,m ⊆ ℝV

Given two valid configurations

                             and 

we have a discrete transition


if there is an event           such that:

•               and 

•  

•

(m1, ω1)

(m1, ω1) ⟶d (m2, ω2)
e ∈ E

(m2, ω2)

s(e) = m1 t(e) = m2
ω1 ∈ Ge
(ω1, ω2) ∈ Je
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Continuous transitions of  HA

A hybrid automaton is:

• a set M of modes

• a set V of variables 
• a set E of events 
• source and target functions


• for every mode m, a flow function


• for every mode m, an invariant predicate


• for every event e, a guard predicate


• for every event e, a jump relation


• for every mode m, an initial predicate


Fm : ℝV × ℝ ⟶ ℝV

Im ⊆ ℝV

s, t : E ⟶ M

Ge ⊆ ℝV

Je ⊆ ℝV × ℝV

I0,m ⊆ ℝV

Given two valid configurations

                             and 

we have a continuous transition


if the following holds:

•  

• there is a continuous function 

 
derivable on ]0,T[ such that:

★  

★                 and 

★

(m1, ω1)

(m1, ω1) ⟶c (m2, ω2)

(m2, ω2)

m1 = m2

Ψ : [0,T ] ⟶ ℝV (T ≥ 0)

∀s ∈ ]0,T[. ·Ψ(s) = Fm1
(Ψ(s), s)

Ψ(0) = ω1 Ψ(T ) = ω2
∀s ∈ [0,T ] . Ψ(s) ∈ Im1
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Reachability set of  HA

A hybrid automaton is:

• a set M of modes

• a set V of variables 
• a set E of events 
• source and target functions


• for every mode m, a flow function


• for every mode m, an invariant predicate


• for every event e, a guard predicate


• for every event e, a jump relation


• for every mode m, an initial predicate


Fm : ℝV × ℝ ⟶ ℝV

Im ⊆ ℝV

s, t : E ⟶ M

Ge ⊆ ℝV

Je ⊆ ℝV × ℝV

I0,m ⊆ ℝV

A configuration is reachable if there is 
a finite sequence of continuous and  
discrete transitions from a valid initial  
configuration, that is:


Reach = {(m, ω) ∣ ∃m0 . ω0 ∈ I0,m0
∩ Im0

.

(m0, ω0) ( →d ∪ →c )⋆ (m, ω)}
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Example
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c ∈ {1,2,3}

configuration initial valid reachable

No Yes Yes

No No No

Yes Yes Yes

No Yes Yes

(off,18,1,20)

(off,17,2,20)

(on,17,2,20)

(on,21,1,20)
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Representability of  functions

In practice, we cannot use any function  
 
as we need a finite representation of it.


Here, we assume that      is given by polynomials on           .


Remark: 

This is not much of a restriction, as many dynamics can be modelled by  
polynomial ones, by adding variables.


Examples:


Fm : ℝV × ℝ ⟶ ℝV

Fm V ⊔ {t}

·x =
f(x, t)
g(x, t)

⇒ introduce y =
1

g(x, t)
⇒ ·x = f(x, t) . y, ·y = − y2 . (∂g

∂x
(x, t) . f(x, t) . y +

∂g
∂t

(x, t))
·x = cos(x) . f(x, t) ⇒ introduce

y = cos(x)
z = sin(x)

⇒
·x = f(x, t) . y
·y = − f(x, t) . y . z
·z = f(x, t) . y2



Representability of  predicates and relations

In practice, we cannot use any predicate   
 
or any relation 

Here, we assume that there are given by first order formulae of real arithmetic.

Concretely, we assume given a countable set    of variables containing           . 

Im, Ge, I0,m ⊆ ℝV

Je ⊆ ℝV × ℝV

X V ⊔ ̂V
t, t′� ::= X ∣ ℚ ∣ t . t′� ∣ t + t′� ∣ − t ∣ t/t′�

ϕ, ϕ′� ::= t ≤ t′� ∣ ⊤ ∣ ϕ ∧ ϕ′� ∣ ¬ϕ ∣ ∃x . ϕ

Semantics:

Given    whose free variables are          

Ex:                                     iff 


Interest:

Validity and satisfibility of first order 
real arithmetic are decidable.

ϕ fv(ϕ)

[|ϕ |] ∈ ℝfv(ϕ)

For hybrid systems, we assume the  
existence of such formulae:


                       whose free variables are 
and   
 
 
       whose free variables are            and


ϕI,m, ϕG,e, ϕI,0,m V

[|ϕI,m |] = Im, [|ϕG,e |] = Ge, [|ϕI,0,m |] = I0,m

ϕJ,e V ⊔ ̂V
[|ϕJ,e |] = Je

(rx, ry, rz) ∈ [|x + y ≤ z |] rx + ry ≤ rz



Loop invariants for HA

Remember:


 
 
So to prove that every elements of Reach satisfies some property, we have to prove 
some sorts of loop invariants. 
 
 
To prove � , you find �  such that:

• � 


• if �  and �  then � 

• if �  and �  then �

Reach ⊆ Prop Inv ⊆ Prop
∀m ∈ M, I0,m ∩ Im ⊆ Inv

(m, ω) ∈ Inv (m, ω) →d (m′�, ω′�) (m′�, ω′�) ∈ Inv
(m, ω) ∈ Inv (m, ω) →c (m′�, ω′�) (m′�, ω′�) ∈ Inv

Reach = ( →d ∪ →c )⋆( ⋃
m∈M

I0,m ∩ Im)



Example: the bouncing ball

We model a bouncing ball that we drop at height �  without initial velocity.H

·z = v, ·v = − g

z ≥ 0

gravityz = H
H ≥ 0

v = 0
0 < c ≤ 1

g > 0

z = 0

v := − cv
bouncing

We want to prove that  
at every instant, the height of the ball is between 0 and H



Example: the bouncing ball

·z = v, ·v = − g

z ≥ 0

gravityz = H
H ≥ 0

v = 0
0 < c ≤ 1

g > 0

z = 0

v := − cv
bouncing

We want to prove that  
at every instant, the height of the ball is between 0 and H

We want � .

Can we use � ?

Prop = {(z, v, H, c, g) ∣ 0 ≤ z ≤ H}
Inv = Prop



Example: the bouncing ball

We want to prove that  
at every instant, the height of the ball is between 0 and H

We want � .

Can we use � ?

Initially, �  and � , so OK

Prop = {(z, v, H, c, g) ∣ 0 ≤ z ≤ H}
Inv = Prop

z = H H ≥ 0
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gravityz = H
H ≥ 0

v = 0
0 < c ≤ 1

g > 0

z = 0

v := − cv
bouncing



Example: the bouncing ball

We want to prove that  
at every instant, the height of the ball is between 0 and H

We want � .

Can we use � ?

Initially, �  and � , so OK 
If �  then �  and � , so OK
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0 < c ≤ 1

g > 0

z = 0

v := − cv
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We want � .
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Initially, �  and � , so OK 
If �  then �  and � , so OK 
If �  then, by � , � .
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Example: the bouncing ball

We want to prove that  
at every instant, the height of the ball is between 0 and H

We want � .

Can we use � ?

Initially, �  and � , so OK 
If �  then �  and � , so OK 
If �  then, by � , � .

Assuming � , can we prove � ?
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Inv = Prop

z = H H ≥ 0
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Example: the bouncing ball

We want to prove that  
at every instant, the height of the ball is between 0 and H

We want � .

Can we use � ?

Initially, �  and � , so OK 
If �  then �  and � , so OK 
If �  then, by � , � .

Assuming � , can we prove � ? No! Take �  very large for example.

Prop = {(z, v, H, c, g) ∣ 0 ≤ z ≤ H}
Inv = Prop

z = H H ≥ 0
(gravity, z, v, H, c, g) →d (gravity, z′�, v′�, H′�, c′�, g′�) z = z′ � H = H′�
(gravity, z, v, H, c, g) →c (gravity, z′�, v′�, H′�, c′�, g′ �) Igravity z′� ≥ 0

0 ≤ z ≤ H z′� ≤ H′ � v

·z = v, ·v = − g

z ≥ 0

gravityz = H
H ≥ 0

v = 0
0 < c ≤ 1

g > 0

z = 0

v := − cv
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Example: the bouncing ball

We want to prove that  
at every instant, the height of the ball is between 0 and H

We want � .

Spoiler: use � 

Initially, �  and � , so OK

Prop = {(z, v, H, c, g) ∣ 0 ≤ z ≤ H}
Inv = {(z, v, H, c, g) ∣ z ≥ 0 ∧ 0 < c ≤ 1 ∧ g > 0 ∧ 2gz ≤ 2gH − v2}

z = H v = 0

·z = v, ·v = − g

z ≥ 0

gravityz = H
H ≥ 0

v = 0
0 < c ≤ 1

g > 0

z = 0

v := − cv
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Example: the bouncing ball

We want to prove that  
at every instant, the height of the ball is between 0 and H

We want � .

Spoiler: use � 

Initially, �  and � , so OK 
If �  and �  then

� , so OK

Prop = {(z, v, H, c, g) ∣ 0 ≤ z ≤ H}
Inv = {(z, v, H, c, g) ∣ z ≥ 0 ∧ 0 < c ≤ 1 ∧ g > 0 ∧ 2gz ≤ 2gH − v2}

z = H v = 0
(gravity, z, v, H, c, g) →d (gravity, z′�, v′�, H′�, c′�, g′�) (z, v, H, c, g) ∈ Inv

2g′�z′� = 2gz ≤ 2gH − v2 = 2g′ �H′�− v2 ≤ 2g′ �H′�− c2v2 = 2g′�H′�− v′�2

·z = v, ·v = − g

z ≥ 0

gravityz = H
H ≥ 0

v = 0
0 < c ≤ 1

g > 0

z = 0

v := − cv
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Example: the bouncing ball

We want to prove that  
at every instant, the height of the ball is between 0 and H

We want � .

Spoiler: use � 

Initially, �  and � , so OK 
If �  and �  then

� , so OK 
If � , then �  and  
�  for some � .

After computation: � , so OK

Prop = {(z, v, H, c, g) ∣ 0 ≤ z ≤ H}
Inv = {(z, v, H, c, g) ∣ z ≥ 0 ∧ 0 < c ≤ 1 ∧ g > 0 ∧ 2gz ≤ 2gH − v2}

z = H v = 0
(gravity, z, v, H, c, g) →d (gravity, z′�, v′�, H′�, c′�, g′�) (z, v, H, c, g) ∈ Inv

2g′�z′� = 2gz ≤ 2gH − v2 = 2g′ �H′�− v2 ≤ 2g′ �H′�− c2v2 = 2g′�H′�− v′�2

(gravity, z, v, H, c, g) →c (gravity, z′�, v′�, H′�, c′�, g′ �) v′� = − gt + v
z′� = − gt2 + vt + z t

2g′�H′�− 2g′�z′ �− v′�2 = 2gH − 2gz − v2 + g2t2

·z = v, ·v = − g

z ≥ 0

gravityz = H
H ≥ 0

v = 0
0 < c ≤ 1

g > 0

z = 0

v := − cv
bouncing



Objective

• Formalize those kinds of arguments in a Hoare triple/sequent calculus style


• Issues:

• We need a presentation of HA adapted to this style 

               Idea: use �  

• �  and �  are semantical objects, so we cannot use them 

• We cannot use closed forms of solutions of differential equations in  
proofs in general!

Reach = ( →d ∪ →c )⋆( ⋃
m∈M

I0,m ∩ Im)

→d →c



Syntax of  Hybrid Programs

We assume given a countable set X of variables.


Hybrid Programs are given by the following grammar:

�                            where �  is a first order formula of real arithmetic (conditional) 
           �                           where �  (resp. � ) is a vector of variables (resp. polynomials)   
                                                                                                                            (assignment) 
           �                   where �  (resp. � ) is a vector of variables (resp. polynomials)   
                                                     and �  is a first order formula of real arithmetic (dynamics) 
           �                                                                                    (sequential composition) 
           �                                                                              (non-deterministic choice) 
           �                                                                                                                      (loop)

α, β ::= ?ϕ ϕ
∣ x := e x e

∣ ·x = e & ϕ x e
ϕ

∣ α; β
∣ α ∪ β
∣ α⋆



Semantics of  HP

�  is defined by induction:


• � 

• � 

• �  iff there is a continuous function �  such that:


• �  and � 

• �  is derivable on �  and for all � ,  

� 

• for all � 


• � 

• � 

• �

[|α |] ⊆ ℝX × ℝX

[|?ϕ |] = {(ω, ω) ∣ ω ∈ [|ϕ |]}
[|x := e |] = {(ω, ω′ �) ∣ ∀x ∈ x, ω′�x = ex(ω) ∧ ∀x ∉ x, ω′�x = ωx}
(ω, ω′ �) ∈ [| ·x = e & ϕ |] ψ : [0,T ] → ℝx

ω = ω(0) ω′� = ω(T )
ψ ]0,T[ t ∈ ]0,T[
·ψ(t) = e(ω(t))

t ∈ [0,T ], ω(t) ∈ [|ϕ |]
[|α; β |] = {(ω, ω′�′�) ∣ ∃ω′�, (ω, ω′�) ∈ [|α |] ∧ (ω′�, ω′�′�) ∈ [|β |]}
[|α ∪ β |] = [|α |] ∪ [|β |]
[|α⋆ |] = {(ω, ω′�) ∣ ∃n ∈ ℕ, ω0, …, ωn, ω = ω0 ∧ ω′� = ωn ∧ (ωi, ωi+1) ∈ [|α |]}

�  denotes: 
• �  
• �

ω(t) ∈ ℝX

∀x ∈ x, ω(t)x = ψ(t)x
∀x ∉ x, ω(t)x = ωx



From HA to HP, the example of  the bouncing ball

We can describe the bouncing ball as a HP

·z = v, ·v = − g

z ≥ 0

gravityz = H
H ≥ 0

v = 0
0 < c ≤ 1

g > 0

z = 0

v := − cv
bouncing

α = ((?z = 0; v := − cv) ∪ ( ·z = v, ·v = − g & z ≥ 0))⋆
≃

�[|α |] = ( →d ∪ →c )⋆

�→d �→c



From HA to HP, in general

A hybrid automaton is:

• a finite set M of modes

• a finite set V of variables 
• a finite set E of events 
• source and target functions


� 

• for every mode m, a flow function


�  polynomial on �  
• for every mode m, an invariant predicate


�  formula on � 

• for every event e, a guard predicate


�  formula on V

• for every event e, a jump relation


�  formula on � 

• for every mode m, an initial predicate


�  formula on �

s, t : E ⟶ M

Fm V ⊔ {t}

ϕI,m V

ϕG,e

ϕJ,e V ⊔ ̂V

ϕI,0,m V



From HA to HP, in general (simplified version)

A hybrid automaton is:
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A hybrid automaton is:

• a finite set M of modes

• a finite set V of variables 
• a finite set E of events 
• source and target functions


� 

• for every mode m, a flow function


�  polynomial on �  
• for every mode m, an invariant predicate


�  formula on � 

• for every event e, a guard predicate


�  formula on V

• for every event e, a jump relation


�  formula on � 

of the form �   

where �  is a polynomial on �  
• for every mode m, an initial predicate


�  formula on �

s, t : E ⟶ M

Fm V ⊔ {t}

ϕI,m V

ϕG,e

ϕJ,e V ⊔ ̂V

⋀
x∈V

̂x = Px

Px V

ϕI,0,m V

From HA to HP, in general (simplified version)



A hybrid automaton is:

• a finite set M of modes

• a finite set V of variables 
• a finite set E of events 
• source and target functions


� 

• for every mode m, a flow function


�  polynomial on �  
• for every mode m, an invariant predicate


�  formula on � 

• for every event e, a guard predicate


�  formula on V

• for every event e, a jump relation


�  formula on � 

of the form �   

where �  is a polynomial on �  
• for every mode m, an initial predicate


�  formula on �

s, t : E ⟶ M

Fm V ⊔ {t}

ϕI,m V

ϕG,e

ϕJ,e V ⊔ ̂V

⋀
x∈V

̂x = Px

Px V

ϕI,0,m V

Assume � , and � 

Assume � .

V ⊆ X mode ∈ X∖V
M ⊆ ℕ
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A hybrid automaton is:

• a finite set M of modes

• a finite set V of variables 
• a finite set E of events 
• source and target functions


� 

• for every mode m, a flow function


�  polynomial on �  
• for every mode m, an invariant predicate


�  formula on � 

• for every event e, a guard predicate


�  formula on V

• for every event e, a jump relation


�  formula on � 

of the form �   

where �  is a polynomial on �  
• for every mode m, an initial predicate


�  formula on �

s, t : E ⟶ M

Fm V ⊔ {t}

ϕI,m V

ϕG,e

ϕJ,e V ⊔ ̂V

⋀
x∈V

̂x = Px

Px V

ϕI,0,m V

Assume � , and � .

Assume � .


� 


  � 


             � 


                                � 

                                � 

                                � 

              � 


              � 


�

V ⊆ X mode ∈ X∖V
M ⊆ ℕ

(
⋃
m∈M

(?mode = m;

( ⋃
e∈E∣s(e)=m

?ϕG,e ∧ ϕI,m;

V := PV;
mode := t(e);
?ϕI,t(e))

⋃
( ·V = Fm & ϕIm))

)
⋆

From HA to HP, in general (simplified version)



Assume � , and � .

Assume � .


� 
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              � 


              � 


�

V ⊆ X mode ∈ X∖V
M ⊆ ℕ

(
⋃
m∈M

(?mode = m;

( ⋃
e∈E∣s(e)=m

?ϕG,e ∧ ϕI,m;

V := PV;
mode := t(e);
?ϕI,t(e))

⋃
( ·V = Fm & ϕIm))

)
⋆

A hybrid automaton is:

• a finite set M of modes

• a finite set V of variables 
• a finite set E of events 
• source and target functions


� 

• for every mode m, a flow function


�  polynomial on �  
• for every mode m, an invariant predicate


�  formula on � 

• for every event e, a guard predicate


�  formula on V

• for every event e, a jump relation


�  formula on � 

of the form �   

where �  is a polynomial on �  
• for every mode m, an initial predicate


�  formula on �

s, t : E ⟶ M

Fm V ⊔ {t}

ϕI,m V

ϕG,e

ϕJ,e V ⊔ ̂V

⋀
x∈V

̂x = Px

Px V

ϕI,0,m V

check the mode

From HA to HP, in general (simplified version)



Assume � , and � .

Assume � .
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�

V ⊆ X mode ∈ X∖V
M ⊆ ℕ

(
⋃
m∈M

(?mode = m;

( ⋃
e∈E∣s(e)=m

?ϕG,e ∧ ϕI,m;

V := PV;
mode := t(e);
?ϕI,t(e))

⋃
( ·V = Fm & ϕIm))

)
⋆

A hybrid automaton is:

• a finite set M of modes

• a finite set V of variables 
• a finite set E of events 
• source and target functions


� 

• for every mode m, a flow function


�  polynomial on �  
• for every mode m, an invariant predicate


�  formula on � 

• for every event e, a guard predicate


�  formula on V

• for every event e, a jump relation


�  formula on � 

of the form �   

where �  is a polynomial on �  
• for every mode m, an initial predicate


�  formula on �

s, t : E ⟶ M

Fm V ⊔ {t}

ϕI,m V

ϕG,e

ϕJ,e V ⊔ ̂V

⋀
x∈V

̂x = Px

Px V

ϕI,0,m V

either do a  
discrete transition

From HA to HP, in general (simplified version)



Assume � , and � .

Assume � .
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V ⊆ X mode ∈ X∖V
M ⊆ ℕ

(
⋃
m∈M

(?mode = m;

( ⋃
e∈E∣s(e)=m

?ϕG,e ∧ ϕI,m;

V := PV;
mode := t(e);
?ϕI,t(e))

⋃
( ·V = Fm & ϕIm))

)
⋆

A hybrid automaton is:

• a finite set M of modes

• a finite set V of variables 
• a finite set E of events 
• source and target functions


� 

• for every mode m, a flow function


�  polynomial on �  
• for every mode m, an invariant predicate


�  formula on � 

• for every event e, a guard predicate


�  formula on V

• for every event e, a jump relation


�  formula on � 

of the form �   

where �  is a polynomial on �  
• for every mode m, an initial predicate


�  formula on �

s, t : E ⟶ M

Fm V ⊔ {t}

ϕI,m V

ϕG,e

ϕJ,e V ⊔ ̂V

⋀
x∈V

̂x = Px

Px V

ϕI,0,m V

or do a  
continuous transition

From HA to HP, in general (simplified version)
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system { {Postconditions
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Sequent/Hoare triple style for HP

{ {Preconditions
Execute the  

system { {Postconditions

Γ
A set of first order  

formulae of  
real arithmetic

[α]
A hybrid program

P
A first order  
formula of  

real arithmetic

⊢
Sequent



A sequent calculus for HP

Γ ⊢ [α]P
• �  a set of first order formulae of real arithmetic

• �  a hybrid program

• �  a first order formula of real arithmetic

Γ
α
P



A sequent calculus for HP

Γ ⊢ [α1]…[αn]P
• �  a set of first order formulae of real arithmetic

• �  hybrid programs

• �  a first order formula of real arithmetic


In particular, when �  we have a first order sequent of real arithmetic


A sequent �  is said to be valid if 

� 


Objective of this lecture: prove that �  is valid

Γ
α1, …, αn
P

n = 0

Γ ⊢ [α1]…[αn]P
{ωn ∣ ∃ω0, …ωn−1, ω0 ∈ ⋂

ϕ∈Γ

[|ϕ |] ∧ ∀i, (ωi−1, ωi) ∈ [|αi |]} ⊆ [|P |]

I0,gravity ⊢ [αball] 0 ≤ z ≤ H



Deductive system for HP

We will see some proof rules to prove validity of sequents:


� 


whose meaning are


To prove that �  is valid, it is enough 
to prove that all �  are valid. 

Rules that satisfy this property are called sound.

Γ1 ⊢ [α1
1]…[α1

n1
] P1 … Γk ⊢ [αk

1]…[αk
nk

] Pk

Γ ⊢ [α1]…[αn] P

Γ ⊢ [α1]…[αn] P
Γi ⊢ [αi

1]…[αi
ni
] Pi



Bouncing ball

Notations: 

� 


�

I0 ≡ z = H, H ≥ 0, v = 0, 0 < c ≤ 1, g > 0

ball ≡ ((?z = 0; v := − cv) ∪ ( ·z = v, ·v = − g & z ≥ 0))
⋆

Sequents to prove: 

�I0 ⊢ [ball] 0 ≤ z ∧ z ≤ H



Rule for loop invariants

� 

Γ ⊢ Inv Inv ⊢ [α] Inv Inv ⊢ P

Γ ⊢ [α⋆] P
(LI)



Rule for loop invariants

� 


Proof of soundness. Assume that:

1. �  is valid, that is � 

2. �  is valid, that is � 

3. �  is valid, that is, � 


We want to prove that �  is valid. Let:

A. � 

B. �  such that � 

We want to prove that � . By 3., it is enough to prove that �  
by induction on � :

• case � : by 1. and A.

• inductive case: assume � , then by 2. and B., � .QED.

Γ ⊢ Inv Inv ⊢ [α] Inv Inv ⊢ P
Γ ⊢ [α⋆] P

(LI)

Γ ⊢ Inv ∩ϕ∈Γ [|ϕ |] ⊆ [| Inv |]
Inv ⊢ [α] Inv {ω′� ∣ ∃ω ∈ [| Inv |], (ω, ω′�) ∈ [|α |]} ⊆ [| Inv |]
Inv ⊢ P [| Inv |] ⊆ [|P |]

Γ ⊢ [α⋆] P
ω0 ∈ ∩ϕ∈Γ [|ϕ |]
ω1, …, ωn (ωi, ωi+1) ∈ [|α |]

ωn ∈ [|P |] ωi ∈ [| Inv |]
i

i = 0
ωi ∈ [| Inv |] ωi+1 ∈ [| Inv |]



Rule for loop invariants

� 


To prove the validity of:

�  

it is enough to prove of:

�  

�  
�  

where

�  

Γ ⊢ Inv Inv ⊢ [α] Inv Inv ⊢ P
Γ ⊢ [α⋆] P

(LI)

I0 ⊢ [ball] 0 ≤ z ≤ H

I0 ⊢ Inv
Inv ⊢ [(?z = 0; v := − cv) ∪ ( ·z = v, ·v = − g & z ≥ 0)] Inv

Inv ⊢ 0 ≤ z ≤ H

Inv ≡ z ≥ 0 ∧ 0 < c ≤ 1 ∧ g > 0 ∧ 2gz ≤ 2gH − v2



Bouncing ball

Notations: 

� 

�
I0 ≡ z = H, H ≥ 0, v = 0, 0 < c ≤ 1, g > 0
Inv ≡ z ≥ 0 ∧ 0 < c ≤ 1 ∧ g > 0 ∧ 2gz ≤ 2gH − v2

Sequents to prove: 

� 

� 

�

I0 ⊢ Inv
Inv ⊢ [(?z = 0; v := − cv) ∪ ( ·z = v, ·v = − g & z ≥ 0)] Inv
Inv ⊢ 0 ≤ z ≤ H



Rule for real arithmetic

� 


This is implementable since the first order theory of reals is decidable!


To prove the validity of:

�  

�  

it is enough the following inclusions:

� 


� 

� 


 
�

∩ϕ∈Γ [|ϕ |] ⊆ [|P |]
Γ ⊢ P

(RA)

I0 ⊢ Inv
Inv ⊢ 0 ≤ z ≤ H

{(z, v, H, g, c) ∣ z = H ∧ H ≥ 0 ∧ v = 0 ∧ 0 < c ≤ 1 ∧ g > 0}
⊆

{(z, v, H, g, c) ∣ z ≥ 0 ∧ 0 < c ≤ 1 ∧ g > 0 ∧ 2gz ≤ 2gH − v2}

{(z, v, H, g, c) ∣ z ≥ 0 ∧ 0 < c ≤ 1 ∧ g > 0 ∧ 2gz ≤ 2gH − v2} ⊆ {(z, v, H, g, c) ∣ 0 ≤ z ≤ H}



Bouncing ball

Notations: 

�Inv ≡ z ≥ 0 ∧ 0 < c ≤ 1 ∧ g > 0 ∧ 2gz ≤ 2gH − v2

Sequents to prove: 

� 
Inv ⊢ [(?z = 0; v := − cv) ∪ ( ·z = v, ·v = − g & z ≥ 0)] Inv



Rule for non-determistic choices

� 


To prove the validity of:

�  

 

it is enough to prove the validity of :

�  

�

Γ ⊢ [α]P Γ ⊢ [β]P
Γ ⊢ [α ∪ β]P

( ∪ )

Inv ⊢ [(?z = 0; v := − cv) ∪ ( ·z = v, ·v = − g & z ≥ 0)] Inv

Inv ⊢ [?z = 0; v := − cv] Inv
Inv ⊢ [ ·z = v, ·v = − g & z ≥ 0] Inv



Bouncing ball

Notations: 

�Inv ≡ z ≥ 0 ∧ 0 < c ≤ 1 ∧ g > 0 ∧ 2gz ≤ 2gH − v2

Sequents to prove: 

� 

� 

Inv ⊢ [?z = 0; v := − cv] Inv
Inv ⊢ [ ·z = v, ·v = − g & z ≥ 0] Inv



Rule for sequential compositions

� 


To prove the validity of:

�  

 

it is enough to prove the validity of :

�  

Γ ⊢ [α][β]P
Γ ⊢ [α; β]P

(; )

Inv ⊢ [?z = 0; v := − cv] Inv

Inv ⊢ [?z = 0][v := − cv] Inv



Bouncing ball

Notations: 

�Inv ≡ z ≥ 0 ∧ 0 < c ≤ 1 ∧ g > 0 ∧ 2gz ≤ 2gH − v2

Sequents to prove: 

� 

� 

Inv ⊢ [?z = 0][v := − cv] Inv
Inv ⊢ [ ·z = v, ·v = − g & z ≥ 0] Inv



Rule for conditionals

� 


To prove the validity of:

�  

 

it is enough to prove the validity of :

�  

Γ, Q ⊢ P
Γ ⊢ [?Q]P

(?)

Inv ⊢ [?z = 0][v := − cv] Inv

Inv, z = 0 ⊢ [v := − cv] Inv



Bouncing ball

Notations: 

�Inv ≡ z ≥ 0 ∧ 0 < c ≤ 1 ∧ g > 0 ∧ 2gz ≤ 2gH − v2

Sequents to prove: 

� 

� 

Inv, z = 0 ⊢ [v := − cv] Inv
Inv ⊢ [ ·z = v, ·v = − g & z ≥ 0] Inv



Rule for conditionals

�  

To prove the validity of:

�  

 

it is enough to prove the validity of :

� 


which can be proved using the (RA) rule. 

Γ ⊢ P(x ← e)
Γ ⊢ [x := e]P

( := )

Inv, z = 0 ⊢ [v := − cv] Inv

Inv, z = 0 ⊢ z ≥ 0 ∧ 0 < c ≤ 1 ∧ g > 0 ∧ 2gz ≤ 2gH − (−cv)2



Bouncing ball

Notations: 

�Inv ≡ z ≥ 0 ∧ 0 < c ≤ 1 ∧ g > 0 ∧ 2gz ≤ 2gH − v2

Sequents to prove: 

� 
Inv ⊢ [ ·z = v, ·v = − g & z ≥ 0] Inv



Rule for simplifying the postconditions

�  

To prove the validity of:

�  

 

it is enough to prove the validity of :

�  

�  
�  

Γ ⊢ [α]P Γ ⊢ [α]Q
Γ ⊢ [α]P ∧ Q

([]∧)

Inv ⊢ [ ·z = v, ·v = − g & z ≥ 0] Inv

Inv ⊢ [ ·z = v, ·v = − g & z ≥ 0] z ≥ 0
Inv ⊢ [ ·z = v, ·v = − g & z ≥ 0] 0 < c ≤ 1 ∧ g > 0
Inv ⊢ [ ·z = v, ·v = − g & z ≥ 0] 2gz ≤ 2gH − v2



Bouncing ball

Notations: 

�Inv ≡ z ≥ 0 ∧ 0 < c ≤ 1 ∧ g > 0 ∧ 2gz ≤ 2gH − v2

Sequents to prove: 

� 

� 

�

Inv ⊢ [ ·z = v, ·v = − g & z ≥ 0] z ≥ 0
Inv ⊢ [ ·z = v, ·v = − g & z ≥ 0] 0 < c ≤ 1 ∧ g > 0
Inv ⊢ [ ·z = v, ·v = − g & z ≥ 0] 2gz ≤ 2gH − v2



Rule for differential weakening

�  

To prove the validity of:

�  

 

it is enough to prove the validity of :

�  

which is obvious.

Q ⊢ P
Γ ⊢ [ ·x = e & Q]P

(dW)

Inv ⊢ [ ·z = v, ·v = − g & z ≥ 0] z ≥ 0

z ≥ 0 ⊢ z ≥ 0



Bouncing ball

Notations: 

�Inv ≡ z ≥ 0 ∧ 0 < c ≤ 1 ∧ g > 0 ∧ 2gz ≤ 2gH − v2

Sequents to prove: 

� 

�
Inv ⊢ [ ·z = v, ·v = − g & z ≥ 0] 0 < c ≤ 1 ∧ g > 0
Inv ⊢ [ ·z = v, ·v = − g & z ≥ 0] 2gz ≤ 2gH − v2



Rule for constant properties

�  

To prove the validity of:

�  

 

it is enough to prove the validity of :

�  

which is obvious.


What about � ?

Γ ⊢ P fv(P) ∩ x = Ø
Γ ⊢ [ ·x = e & Q]P

(cst)

Inv ⊢ [ ·z = v, ·v = − g & z ≥ 0] 0 < c ≤ 1 ∧ g > 0

Inv ⊢ 0 < c ≤ 1 ∧ g > 0

Inv ⊢ [ ·z = v, ·v = − g & z ≥ 0] 2gz ≤ 2gH − v2



Invariant of  a dynamics, and Lie derivative

� 


� 


Assume that � . We want something to ensure:

�  

It is enough to require that �  is constant along the dynamics, that is, if �  is a solution 
of � , then �  is constant, that is, its derivative is zero.


� 


So it is enough that the function �  to be zero along the dynamics.

·x = e & Q ≃ (?Q; x := x + dt . e)⋆; ?Q

Γ, Q ⊢ Inv Inv, Q ⊢ Inv(x ← x + dt . e) Inv ⊢ P
Γ ⊢ [ ·x = e & Q]P

(dtI)

P = Inv ≡ f ≥ 0
f(ω) ≥ 0 ⇒ f(ω + dt . e(ω)) ≥ 0

f ψ
·x = e K : t ↦ f(ψ(t))

·K(t) = ∑
x∈x

∂f
∂x

(ψ(t)) . ·ψ(t) = ∑
x∈x

∂f
∂x

(ψ(t)) . ex(ψ(t))

ℒe f = ∑
x∈x

∂f
∂x

. ex



Rule for differential invariants

�  

To prove the validity of:

�  

 

it is enough to prove the validity of :

�  

which is obvious and of:

�  

which is true after computation of the Lie derivative.

Γ, Q ⊢ f ≥ 0 Γ ⊢ [ ·x = e & Q]ℒe f = 0
Γ ⊢ [ ·x = e & Q] f ≥ 0

(dI)

Inv ⊢ [ ·z = v, ·v = − g & z ≥ 0] 2gz ≤ 2gH − v2

Inv, z ≥ 0 ⊢ 2gz ≤ 2gH − v2

Inv ⊢ [ ·z = v, ·v = − g & z ≥ 0] ℒe f = 0



Bouncing ball

Notations: 

Sequents to prove: 

No more!
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