Lectures on Formal Methods for Cyber-Physical Systems
SOKENDAI, 07/29/19

Jerémy Dubut
National Institute of Informatics
Japanese-French Laboratory of Informatics

NIi

ERATo
MMSD

Objectives of this lecture

* Deductive system to prove invariants of hybrid systems

* Representability of HS (hybrid programs)
* Platzer’s Differential Dynamic Logic

* Sequent calculus for this logic

References

* 1. A. Henzinger, The Theory of Hybrid Automata, Verification of
Digital and Hybrid Systems, volume 170 of the NATO ASI Series,
pp 265-292. Springer, 2000.

* A. Platzer’s group. http://symbolaris.com

* A. Platzer, Logical Foundations of Cyber-Physical Systems.
Springer, 2018.

e J. Kolc¢ak, I. Hasuo, J. Dubut, S. Katsumata, D. Sprunger,
A. Yamada, Relational Differential Dynamic Logic. Preprint
arXiv:1903.00153.

http://symbolaris.com

Recap’ on hybrid automata

loff
x>2T | x=—-0.1x
—>
T € [15.30]
cef{123] *=1-2
turn X <T-1 / \ x>T+1 yurn
on . <123} off
T € [15,30] \ /
lon
x<T |x=4c—-0.1x
>
Te[1530 7.5
ce{123 *-

Thermostat system

A hybrid automaton is:

Recap’ on hybrid automata

—>
T e [15.30]
ce {123y *=71-

turn x<T-1 /

on .e11,23)
T € [15,30]

x=4c—-0.1x

x<T

>
Te1530] 1.,
cef{123] *=1F

Thermostat system

A hybrid automaton is:
e aset M of modes

off

Recap’ on hybrid automata

x>T

|off A hybrid automaton is:

x=—-0.1x

—>

T € [15,30]
c e {123)

e aset M of modes
e asetV of variables

on . e{1,2,3)
T € [15,30]

*> T+ 1 turn | V=0T |

|

> T —

,'«« ‘e,v.,,‘_.{._ ‘
D L

off

Thermostat system

Recap’ on hybrid automata

[off A hybrid automaton is:
ST 01 aset M of modes
RN P e asetV of variables
T € [15,30] * aset E of events
cef{123] *=1-2

T e [15.30] \ /
lon
x<T |x=4c—-0.1x
>
Te530l . <7.n
ceflozy| =17

Thermostat system

Recap’ on hybrid automata

loff
x2>2T | x=-0.1x
—
T € [15.30]
cef{123] *=1-2

turn X <71-

on . c 123

T (1534
x<T |x=4c—-0.1x
>
Te[1530| . 7.5
cef{123] *=1F

Thermostat system

off

A hybrid automaton is:
e aset M of modes
e asetV of variables
* aset E of events

* source and target functions
s,t . E— M

s(turn off) = on ,
s(turn on) = off
; t(turn off) = off |
' t(turn on) = on !

Recap’ on hybrid automata

- A hybrid automaton is:
>T K 1 e aset M of mo_des
I * asetV of variables
T € [15,30] e aset E of events
ce (123} 2T e source and target functions
st . E— M
turn X <7T-1 / \ turn for evcle:rnz/:r%?/df Hrgi)flﬂgy/v function
on . <1123}
T € [15,30] \

FO f(-x, C, T, t) — (_le,O,O) v’

x<T K
p| —==
Te1530] . _ o,
cef{123] *=1F

Fon(x, e.T.0) = (4¢ — 0.1x.,0,0) ;;?

Thermostat system

Recap’ on hybrid automata

= = —0.1x

T € [15,30]
c e {1,2,3}

on .e11,23)
T € [15,30] \

ver KCTOD
T € [15,30]
C E {1,293}

x<T+?2

Thermostat system

R, (e T = (e = 0.150,0) |

A hybrid automaton is:
e aset M of modes
e asetV of variables
* aset E of events
* source and target functions
s,t :E— M
* for every mode m, a flow function
F:R'XR— R

x(t) = cstexp(—0.17)
c =cst, 7T = cst

x() = 40c + cstexp(—0.17)
c = cst, T = cst

Recap’ on hybrid automata

x>T

—>

T € [15,30]] ="

c e {123\

turn x<T-1 /

on .e11,23)
T € [15,30]

\

/

off

x<T

lon
x=4c—-0.1x

>

T e [15301l" _

ce{1,23}"

Thermostat system

A hybrid automaton is:

B L= {weT) [x2T-2)

~t [, ={(x.c.T)|x<T+2} |

a set M of modes
a set V of variables
a set E of events
source and target functions
st . E— M
for every mode m, a flow function
F:R'XR— R
for every mode m, an invariant predicate
I CRY

Recap’ on hybrid automata

loff
x2>2T | x=-0.1x
—
T € [15.30]
cef{123] *=1-2

x<T

>

T e [15,30]

ce{1,2,3}

Thermostat system

A hybrid automaton is:
e aset M of modes
e asetV of variables
* aset E of events
* source and target functions
st . E— M
* for every mode m, a flow function
F:R'XR— R
e for every mode m, an invariant predicate
I CRY

for every event e, a guard predicate
G,CRY

’ Gturn off = {()C, c,T) | x>T+ 1} ’

v.
0
‘ G
4

tlurn on

Recap’ on hybrid automata

|off A hybrid automaton is:
e aset M of modes

> T ¢ — — I
X 2 X 0.1x e asetV of variables

—>

T € [15,30] * aset E of events
c e {1,2,3}

x2T=2 * source and target functions

st . E— M
* for every mode m, a flow function
F:R'XR— R
for every mode m, an invariant predicate
I CRY
e for every event e, a guard predicate
G,CRY

e for every event e, a jump relation
J,CRYxRY

x>T+1 turn

T € [15,30]
ce{1,2,3}

| ,: Jturn Off == {(-x7 C, T, -x,a C/, T,) | X = -x, /\ ¢ = c, /\ T = T,}

Thermostat syste‘ e

~ it ;
DRSNS
I o
‘ '3

¥ Y turn on

={x,c,T,x',c', T | x=x"Ac" € {1,2,3} AT € [15,30]} _-"-

Recap’ on hybrid automata

\ 7 e 115,301

2
turn X < 1 / \

off

on . ¢ {1,2\}
T € [15,30\

T x ST & = 4c N 1x

T € [15,30] <T+2
e {123 x< 1+

Thermosta

A hybrid automaton is:

T 1, ={eT) | x>TAace (123) AT [1530]) §

Lyon=1{0,c,T) | x <TAce {123} AT e[1530]} ,-;?

a set M of modes
a set V of variables
a set E of events
source and target functions
st . E— M
for every mode m, a flow function
F:R'XR— R
for every mode m, an invariant predicate
I CRY
for every event e, a guard predicate
G,CRY
for every event e, a jJump relation
J,CRYxRY

for every mode m, an initial predicate
IO,m C RV

Verification of hybrid systems

Goal: prove that the system is not going
wrong

This means proving some properties on
the set of
reachable configurations

Configurations of a hybrid automaton

A configuration is an element of the form
(m,w) € M x RY

An initial configuration is a configuration
(m,) such that w € I,,,.

A valid configuration is a configuration
(m,w) such that w € I,.

A hybrid automaton is:

a set M of modes
a set V of variables
a set E of events
source and target functions
s,t . E— M
for every mode m, a flow function
F :RYXR— R"
for every mode m, an invariant predicate
I CRY
for every event e, a guard predicate
G, CRY
for every event e, a jJump relation
J,CRYxRY

for every mode m, an initial predicate
IO,m C RV

Example

Loff|
x>T x=—-0.1x
4>
T € [15,30]
ce{1,2,3} 2 T2 ' '
configuration initial valid
turn X <T-1 / \ x>T+1 4urn
on C € {13293} Off
T € [15,30] \ /
lon]
>
T € [15,30] <T+?2
C € {19293} =
Thermostat system

Example

loff]
x>2T | x=-0.1x
4>
T € [15,30]
cef123) *2T-2 —
configuration]
turn x<T-1 / \ X>T+1turn
on . c(123) off
T € [15,30] \ /
lon
x<T |x=4c—-0.1x
>
Te[1530 . 7.0
ce{123 *-
Thermostat system

Discrete transitions of HA

Given two valid configurations
(m, w;) and (m,, ®,)
we have a discrete transition
(my, 0)) — 4 (My, @,)

if there is an event e € E such that:

e s(e) =myand t(e) = m,
®* W = Ge
o (a)l, 602) = Je

A hybrid automaton is:

a set M of modes
a set V of variables
a set E of events
source and target functions
s,t . E— M
for every mode m, a flow function
F :RYXR— R"
for every mode m, an invariant predicate
I CRY
for every event e, a guard predicate
G, CRY
for every event e, a jJump relation
J,CRYxRY

for every mode m, an initial predicate
IO,m C RV

Example

Loff
x2>2T | x=-0.1x
-
T € [15,30]
cef{123] *=1-2
turn X <T-1 / \ x>T+1 ¢,
N ce {1,223} °
T € [15,30] \ /
lon
x<T |x=4c—-0.1x
>
Te530 <75
cef{123] *=1F

Thermostat system

rn
ff

(m,x,c,T) —,(m',x",c’,T)

(off,19,1,20.5) —>, (on,19,2,21)

(off,19,1,20) —, (0ff,19,2,21)

(off,19,1,20) —, (0n,20,2,21)

(off,19,1,20) —, (0Nn,19,2,16)

(off,20,1,20) —, (on,20,2,21)

??

??

??

??

??

Example

Loff
x2>2T | x=-0.1x
-
T € [15,30]
cef{123] *=1-2
turn X <T-1 / \ x>T+1 ¢,
N ce {1,223} °
T € [15,30] \ /
lon
x<T |x=4c—-0.1x
>
Te1530 |, 7.5
ce{123 *-

Thermostat system

rn
ff

(m,x,c,T) —,(m',x",c’,T)

(off,19,1,20.5) —>, (on,19,2,21)

(off,19,1,20) —, (0ff,19,2,21)

(off,19,1,20) —, (0n,20,2,21)

(off,19,1,20) —, (0Nn,19,2,16)

(off,20,1,20) —, (on,20,2,21)

Yes

No

No

No

No

Continuous transitions of HA

Given two valid configurations
(my, w;) and (m,, w,)
we have a continuous transition
(my, w;) — (my, @,)
If the following holds:
* M =m,
e there is a continuous function
¥:[0T] — RY (T>0)
derivable on]0, T[such that:
* Vs € 10,T[. ¥(s) = F,, (¥(s), 5)
* P(0) =w;and Y(T) = w,
* Vs € [0,T].W(s) €1,

A hybrid automaton is:

a set M of modes
a set V of variables
a set E of events
source and target functions
s,t . E— M
for every mode m, a flow function
F :RYXR— R"
for every mode m, an invariant predicate
I CRY
for every event e, a guard predicate
G, CRY
for every event e, a jJump relation
J,CRYxRY

for every mode m, an initial predicate
IO,m C RV

Example

Loff|
x2>2T | x=-0.1x
—>
T e [15,30]
ce{l1,2,3}

turn x<T-1

7\

on .e11,23)
T € [15,30]
n
x<T |x=4c—-0.1x
>
T € [15,30] <Tan
cef{123] *=1F

2
(o)
lon|

Thermostat system

rn
ff

(m,x,c,T) —.(m',x',c",T)

(off,19,1,20) — . (off,18,1,20)

(off,19,1,20) — . (on,18,1,20)

(off,19,1,20) —_. (0off,19,1,20)

(off,19,1,20) —_. (off,18,2,23)

(off,19,1,20) — . (0ff,20,1,20)

??

??

??

??

??

Example

Loff|
x2>2T | x=-0.1x
—>
T e [15,30]
ce{l1,2,3}

turn x<T-1

7\

on .e11,23)
T € [15,30]
n
x<T |x=4c—-0.1x
>
T € [15,30] <T42
ce{123 *-

2
(o)
lon|

Thermostat system

rn
ff

(m,x,c,T) —.(m',x',c",T)

(off,19,1,20) — . (off,18,1,20)

(off,19,1,20) — . (on,18,1,20)

(off,19,1,20) —_. (0off,19,1,20)

(off,19,1,20) —_. (off,18,2,23)

(off,19,1,20) — . (0ff,20,1,20)

Yes

No

Yes

No

No

Reachability set of HA

A configuration is reachable if there is
a finite sequence of continuous and
discrete transitions from a valid initial
configuration, that is:

Reach = {(m,w) | Amy. vy € Iy, N 1, -

(Mg, wy) (—,4U =,)" (m, w)}

A hybrid automaton is:

a set M of modes
a set V of variables
a set E of events
source and target functions
s,t . E— M
for every mode m, a flow function
F :RYXR— R"
for every mode m, an invariant predicate
I CRY
for every event e, a guard predicate
G, CRY
for every event e, a jJump relation
J,CRYxRY

for every mode m, an initial predicate
IO,m C RV

Example

Loff
x>T x=-—0.1x
4>
T € [15,30]
ce {1,2,3} 2 T2 i '
configuration .| reachable
turn X<T—1 / \ X>T+1 turn
on . c (123} off
T € [15,30] \ /
lon]
x<T |x=4c—-0.1x
>
T € [15,30] <T+2
ce {1,2,3} =
Thermostat system

Example

loff]
x>2T | x=-0.1x
4>
T € [15,30]
ce{123)| ¥*=1-2 —
configuration ;.o reachable
turn x<T-1 / \ X>T+1turn
on . c(123) off
T € [15,30] \ /
lon
x<T |x=4c—-0.1x
>
T € [15,30] <T+2
ce(123) * -
Actually, initial = valid = reachable
Thermostat system

Representability of functions

In practice, we cannot use any function
F:R'XR— R
as we need a finite representation of it.

Here, we assume that F is given by polynomials on v o {¢}.

Remark:
This is not much of a restriction, as many dynamics can be modelled by
polynomial ones, by adding variables.

Examples:

. fx ~ introd 1
X = INtroauce Y =
g(x, 1) g(x,1)

y = cos(x) X =fx,0.y
X = cos(x).f(x,t) = introduce | sin(o) => |y=—f(x1).y.2
<7 = fx1). >

0 0
= i=fnD.y.5=—)>. (a—ioc, 0. fx, 1)y +§<x,)

Representability of predicates and relations

In practice, we cannot use any predicate
l,.G,1, CRY
or any relation
J,CRYxRY

Here, we assume that there are given by first order formulae of real arithmetic.

S

Concretely, we assume given a countable set X of variables containingv 1 V.
Lt =X Q.|+t | —1t]|t/t

g, i=t | T|pAP | ~gp|Tx. ¢

For hybrid systems, we assume the

Semantics: | f e o
Given ¢ whose free variables are fu(g) | ©€XIstence of such formulae:
1¢1 € RNV b1 DG.er D10.m Whose free variables are V
and

Ex: (r,r,r) €Ellx+y<z[liff n+r,=r
o T 1l = Ll = Gl ol = L,

Interest:

Validity and satisfibility of first order _ 7

real arithmetic are decidable. [¢s.01=J,

¢;. whose free variables are VU V and

Loop invariants for HA

Remember:
Reach = (-, U —)*(|] L,,n1,)

memM

So to prove that every elements of Reach satisfies some property, we have to prove
some sorts of loop invariants.

To prove Reach C Prop, you find Inv € Prop such that:
e VmeM, I, NI, Clnv
o if (m,w) € Invand (m,w) =, (m’,®’) then (m’, ®’) € Inv
o if (m,w) € Invand (m,w) =, (m',w’) then (m’, w’) € Inv

Example: the bouncing ball

We model a bouncing ball that we drop at height H without initial velocity.

—H [gravity
H>0]| t=vww=-g z=0
0» bouncing
—_ > V.= —CV
O0<c<l1 22
g>0

We want to prove that
at every instant, the height of the ball is between 0 and H

Example: the bouncing ball

r=H [gravity
H>0| z=vw=-g z=0
O» bouncing
= > Vi=-—cCV
O0<c<l1 220
g>0

We want to prove that
at every instant, the height of the ball is between O and H

We want Prop = {(z,v,H,c,2) | 0 <z < H}.
Can we use Inv = Prop?

Example: the bouncing ball

r=H [gravity
H>0| z=vw=-g z=0
O» bouncing
Vy = > V.= —CV
O0<c<l1 220
g>0

We want to prove that
at every instant, the height of the ball is between O and H

We want Prop = {(z,v,H,c,2) | 0 <z < H}.
Can we use Inv = Prop?
Initially, z = H and H > 0, so OK

Example: the bouncing ball

r=H [gravity
H>0| z=vw=-g z=0
O» bouncing
= > V. =—=CV
O0<c<l1 220
g>0

We want to prove that
at every instant, the height of the ball is between O and H

We want Prop = {(z,v,H,c,2) | 0 <z < H}.
Can we use Inv = Prop?
Initially, z = H and H > 0, so OK

If (gravity, z, v, H, ¢, g) —, (gravity, 7', v\, H',¢’,g') then z = z’and H = H', so OK

Example: the bouncing ball

r=H [gravity
H>0| z=vw=-g z=0
O» bouncing
Vy = > V.= —CV
O0<c<l1 220
g>0

We want to prove that
at every instant, the height of the ball is between O and H

We want Prop = {(z,v,H,c,2) | 0 <z < H}.

Can we use Inv = Prop?

Initially, z = H and H > 0, so OK

If (gravity, z, v, H, ¢, g) —, (gravity, 7', v\, H',¢’,g') then z = z’and H = H', so OK
If (gravity, z, v, H, ¢, g) —_ (gravity, 2, v/, H', ¢’, g’) then, by Igravity, 7' > 0.

Example: the bouncing ball

r=H [gravity
H>0| z=vw=-g z=0
O» bouncing
V= > Vi=-—cCV
O0<c<l1 220
g>0

We want to prove that
at every instant, the height of the ball is between O and H

We want Prop = {(z,v,H,c,2) | 0 <z < H}.

Can we use Inv = Prop?

Initially, z = H and H > 0, so OK

If (gravity, z, v, H, ¢, g) —, (gravity, 7', v\, H',¢’,g') then z = z’and H = H', so OK
If (gravity, z,v, H, ¢, g) — . (gravity, 7', v, H',c’, g’) then, by Igravity, 7' > 0.
Assuming 0 < z < H, can we prove 7' < H?

Example: the bouncing ball

r=H [gravity
H>0| z=vw=-g z=0
O» bouncing
= > V. =—=CV
O0<c<l1 220
g>0

We want to prove that
at every instant, the height of the ball is between O and H

We want Prop = {(z,v,H,c,2) | 0 <z < H}.

Can we use Inv = Prop?

Initially, z = H and H > 0, so OK

If (gravity, z, v, H, ¢, g) —, (gravity, 7', v\, H',¢’,g') then z = z’and H = H', so OK
If (gravity, z,v, H, ¢, g) — . (gravity, 7', v, H',c’, g’) then, by Igravity, 7' > 0.
Assuming 0 < z < H, can we prove 7' < H? No! Take v very large for example.

Example: the bouncing ball

r=H [gravity
H>0| z=vw=-g z=0
0» bouncing
V= > Vi=-—cCV
O0<c<l1 220
g>0

We want to prove that
at every instant, the height of the ball is between O and H

We want Prop = {(z,v,H,c,2) | 0 <z < H}.
Spoiler:use Inv = {(z, v, H,c,8) | 2> 0A0<c<1Ag>0A2gz <2gH—v?)
Initially, z = H and v = 0, so OK

Example: the bouncing ball

r=H [gravity
H>0| z=vw=-g z=0
O» bouncing
= > V. =—=CV
O0<c<l1 220
g>0

We want to prove that
at every instant, the height of the ball is between O and H

We want Prop = {(z,v,H,c,2) | 0 <z < H}.

Spoiler: use Inv = {(z,v,H,c,2) | 2> 0A0<c<1Ag>0A2gz7<2gH—V?)
Initially, z = H and v = 0, so OK

If (gravity,z,v,H,c, g2) —>d (gravity, z’ Vv, H', c', g") and (z,v,H,c, g) E Inv then
2¢'7 =2g7 < 2gH —v? =2g9'H —v* < 2¢'H — c¢>v?* =2g'H' — v?, so OK

Example: the bouncing ball

r=H [gravity
H>0| z=vw=-g z=0
0» bouncing
= > Vi=-—cCV
O0<c<l1 220
g>0

We want to prove that
at every instant, the height of the ball is between O and H

We want Prop = {(z,v,H,c,2) | 0 <z < H}.

Spoiler: use Inv = {(z,v,H,c,2) | 2> 0A0<c<1Ag>0A2gz7<2gH—V?)
Initially, z = H and v = 0, so OK

If (gravity,z,v,H,c, g2) —>d (gravity, z’ Vv, H', c', g") and (z,v,H,c, g) E Inv then
28’7 =2g7 < 2gH —v? =2g'H —v* < 2¢'H' — c*v* = 2g’H’— 2, s0 OK

If (gravity, z,v, H, ¢, g) — . (gravity, 2, v, H',c’, g'), thenv' = — gt + v and

7 = —gt2+vt+zforsomet
After computation: 2g'H’ — 2g'7' — v? = 2gH — 297 — v? + g%t*, so OK

Objective

e Formalize those kinds of arguments in a Hoare triple/sequent calculus style

* |ssues:
 We need a presentation of HA adapted to this style

Idea: use Reach = (=, U — .)*(U ly,,N1I,)

meM
e —and — . are semantical objects, so we cannot use them

 We cannot use closed forms of solutions of differential equations in
proofs in general!

Syntax of Hybrid Programs

We assume given a countable set X of variables.

Hybrid Programs are given by the following grammatr:

a,f =719 where ¢ is a first order formula of real arithmetic (conditional)
|x:=e where X (resp. €) is a vector of variables (resp. polynomials)
(assignment)

| XxX=e & ¢ where X (resp. €) is a vector of variables (resp. polynomials)

and ¢ is a first order formula of real arithmetic (dynamics)

a; [(sequential composition)

alUf (non-deterministic choice)

a* (loop)

Semantics of HP

] € R* x R*is defined by induction:

* |7¢]l = {(w,0) |w €l o]}
e [x:=el| ={(w, @) |VxEX w,=€(0w) AVX &€ X, 0, = ®,}
e (w,w') € [|x=e & ¢|| iff there is a continuous function y : [0,7] — R* such that:

e w=w(0)and ' = w(T)

(1) € R* denotes:
e s derivable on]0,7[and for all t € 10,77,

. Vx € x, a(0), = y(),
(1) = e((t) Vs @ x o), — o,

e forallt € [0,T],w(t) €[]
s [a;fll = {(w,0") | o', (w, @) € [| || A, @") € [/1]
e [aupli=lallUullpl

e [a*] = {(w,®) | In € N, @y, ..., 0,0 =0y AN @' = o, A(w;,,w;,;) € [lall}

From HA to HE the example of the bouncing ball

We can describe the bouncing ball as a HP

r=H [gravity
H>0| z=vyv=—g z=0
O» bouncing
V= > Vi=-—cCV
O<c<1 220
g>0

From HA to HE in general

A hybrid automaton is:
e a finite set M of modes
e afinite set V of variables
* afinite set E of events
* source and target functions

s,t: E— M
e for every mode m, a flow function
F, polynomial on V U {¢}

e for every mode m, an invariant predicate

¢y, formulaon V
* for every event e, a guard predicate

$¢.. formula on V
e for every event e, a jump relation

¢; . formulaon V LI Vv

* for every mode m, an initial predicate

$;0.m formulaon V

From HA to HE, 1n general (stmplified version)

A hybrid automaton is:
e a finite set M of modes
e afinite set V of variables
* afinite set E of events
* source and target functions

s,t: E— M
e for every mode m, a flow function
F,, polynomial on V LI {§
e for every mode m, an invariant predicate
¢y, formulaon V
* for every event e, a guard predicate
$¢.. formula on V
e for every event e, a jump relation
¢; . formulaon V LI Vv
* for every mode m, an initial predicate

$;0.m formulaon V

From HA to HE, 1n general (stmplified version)

A hybrid automaton is:
e a finite set M of modes
e a finite set V of variables
e a finite set E of events
e source and target functions

s,t: E— M
* for every mode m, a flow function
F,, polynomial on V LI }{

* for every mode m, an invariant predicate

¢;,, formulaon V
e for every event e, a guard predicate

$¢.. formula on V
e for every event e, a jump relation

¢; . formulaon VLI v

of the form /\ X =P,

xeV
where P_is a polynomial on V

e for every mode m, an initial predicate
¢ 0., formulaon V

From HA to HE, 1n general (stmplified version)

A hybrid automaton is: Assume V C X, and mode € X\V
e a finite set M of modes Assume M C N

e a finite set V of variables
e a finite set E of events
e source and target functions

s,t: E— M
* for every mode m, a flow function
F,, polynomial on V LI }{

* for every mode m, an invariant predicate

¢;,, formulaon V
e for every event e, a guard predicate

$¢.. formula on V
e for every event e, a jump relation

¢; . formulaon VLI v

of the form /\ X =P,

xeV
where P_is a polynomial on V

e for every mode m, an initial predicate
¢ 0., formulaon V

From HA to HE, 1n general (stmplified version)

A hybrid automaton is:

e a finite set M of modes

e a finite set V of variables

e a finite set E of events

e source and target functions

s,t: EFE— M
* for every mode m, a flow function
F,, polynomial on V LI }{

* for every mode m, an invariant predicate

¢;,, formulaon V
e for every event e, a guard predicate
$¢.. formula on V
e for every event e, a jump relation
¢; . formulaon VLI v

of the form /\ X =P,

xeV
where P_is a polynomial on V

e for every mode m, an initial predicate

¢ 0., formulaon V

Assume V C X, and mode € X\V.
Assume M C N.

(
U (?mode = m;

meM
(U ?¢G,e A ¢I,m;

e€E|s(e)=m
V.= Py,
mode = 1(¢e);

2P e))

U

(V=F, & gb,m)>

:

From HA to HE, 1n general (stmplified version)

A hybrid automaton is: Assume V C X, and mode € X\V.
e a finite set M of modes Assume M C N

e a finite set V of variables
e a finite set E of events
e source and target functions

s,t: EFE— M
* for every mode m, a flow function
F,, polynomial on V LI }{

. check the mode

* for every mode m, an invariant predicate U 9
! A ;
¢, formulaon V (o) P.e NP
’ ecL|s(e)=m
e for every event e, a guard predicate V=P -
. Vs

$¢.. formula on V
e for every event e, a jump relation
¢;,formulaon Vi V

of the form /\ X =P, U

wev (V=F,&¢,))
where P, is a polynomial on V *
e for every mode m, an initial predicate)

¢ 0., formulaon V

mode = 1(¢e);

2P 0))

From HA to HE, 1n general (stmplified version)

A hybrid automaton is: Assume V C X, and mode € X\V.
e a finite set M of modes Assume M C N

e a finite set V of variables
e a finite set E of events

e source and target functions
s,t: E— M < either do a
* for every mode m, a flow function U (? __ discrete transition
_ o /mode = m, ’
F, polynomial on V' LI

* for every mode m, an invariant predicate
¢y, formulaon V
e for every event e, a guard predicate
$¢.. formula on V
e for every event e, a jump relation
¢; . formulaon V LI v

of the form /\ X =P,

xeV
where P_is a polynomial on V

e for every mode m, an initial predicate
¢ 0., formulaon V

From HA to HE, 1n general (stmplified version)

A hybrid automaton is: Assume V C X, and mode € X\V.
e a finite set M of modes Assume M C N

e a finite set V of variables
e a finite set E of events
e source and target functions

s,t: E— M
* for every mode m, a flow function
F,, polynomial on V LI }{

* for every mode m, an invariant predicate

¢y, formulaon V
e for every event e, a guard predicate

$¢.. formula on V
e for every event e, a jump relation

¢; . formulaon VLI v

of the form /\ X =P,

xeV
where P_is a polynomial on V

e for every mode m, an initial predicate
¢ 0., formulaon V

ordo a
continuous transition

Sequent/Hoare triple style for HP

Execute the

system Postconditions

Preconditions

Sequent/Hoare triple style for HP

Execute the

system Postconditions

Preconditions

A set of first order
formulae of
real arithmetic

Sequent/Hoare triple style for HP

Execute the

Preconditions Postconditions

system
\4 v
A set of first order A hybrid program

formulae of
real arithmetic

Sequent/Hoare triple style for HP

Execute the

Preconditions Postconditions

system
v v \ 4
A set of first order A hybrid program A first order
formulae of formula of

real arithmetic real arithmetic

Sequent/Hoare triple style for HP

Preconditions

A set of first order
formulae of
real arithmetic

Execute the

system

@]

A hybrid program

Sequent

Postconditions

A first order
formula of
real arithmetic

A sequent calculus for HP

[+ [a]lP

e | a set of first order formulae of real arithmetic
e « a hybrid program
e P a first order formula of real arithmetic

A sequent calculus for HP

'~ loq]...la,|P

e | a set of first order formulae of real arithmetic
e ay,...,a, hybrid programs
e P a first order formula of real arithmetic

In particular, when n = O we have a first order sequent of real arithmetic

Asequentl I [a,]...[a,]P is said to be valid if

{lw, | dwy, ...0,_{, ®y E ﬂ loll AV, (w,_,w) €la;]l} C[|P]l
pel’

Objective of this lecture: prove that [, 4 [,] 0 <z < Hisvalid
0,gravity ball

Deductive system for HP

We will see some proof rules to prove validity of sequents:

T F[ag].. o, 1P, ... T;F [af]...[o,]P,
| [al][an]P

whose meaning are

To prove that 1 - |a]...[a,] P is valid, it is enough
to prove thatallT'; - [a!]... [a,ii] P; are valid.

Rules that satisfy this property are called sound.

Bouncing ball

Notations:

Iy=z=H,H>0,v=0,0<c<1,g>0
*
baIIE<(?z=0;v:=—cv)U(z’=v,\>=—g&z20))

Sequents to prove:

Rule for loop invariants

I'FInv Invl [a]Inv InvF P
I'+[a*] P

(L)

Rule for loop invariants

I'FInv Invl [a]Inv InvF P
I'F+[a*] P

(L)

Proof of soundness. Assume that:

1. I' = Invis valid, thatis Ny [[@[] € [[Inv]]

2. Inv - [a] Invisvalid, thatis {@' | dw € [|Inv]], (w, w’) € [|a]]} C [|Inv]]
3. Inv - Pisvalid, thatis, [[Inv]] C [| P|]

We want to prove that I" - [a*] P is valid. Let:

A. @y € Nyer [Pl

B. w,...,®, such that (w;, w,. ;) € [|a]l

We want to prove that w, € [| P|]. By 3., it is enough to prove that @, € [| Inv]
by induction on i:

e casei = (0: by 1.and A.

e inductive case: assume w; € [Inv|], then by 2. and B., w;,; € [| Inv|.QED.

Rule for loop invariants

I'FInv Invl [a]Inv InvF P
I'+[a*] P

(L)

To prove the validity of:
[yF[palll] 0 <z<H

it is enough to prove of:
Iy = Inv

vk [(?2z=0;v:=—cv)U(z=v,v=—g & z>0)] Inv
Inv-F0<z<H

where
Inv=z>0A0<c<1Ag>0A2g97 <2gH —v?

Bouncing ball

Notations:

Iy=z=H,H>0,v=0,0<c<1,g>0
Inv=z>0A0<c<1Ag>0A2gz <2gH —v?

Sequents to prove:

IvE(2z2=0vi=—cv)U(z=v,p=—g & 22 0)] Inv
'Inv F0<z<H:!

Rule for real arithmetic

Nper [N S TPl
kP

(RA)

This is implementable since the first order theory of reals is decidable!

To prove the validity of:
Iy Inv

nvFO<z<H

it is enough the following inclusions:
{(z,v,H,2,0) |z=HAH>0Av=0A0<c<1Ag>0}
C

{(z,v,H,8,0) | 220A0<c<1Ag>0A2gz7<2gH—v?)

{(z,v,H,g,¢) |22 0AN0<c < 1/\g>0/\2gz§2gH—v2} Cc {(z,v,H,g,c) | 0<z< H}

Bouncing ball

Notations:

Inv=z>0A0<c<1Ag>0A2g7<2gH —V*

Sequents to prove:

Rule for non-determastic choices

' [a]lP T F [B]P
' [aUp]P

(V)

To prove the validity of:
Inv [(?zzO;vzz—cv) U(z’zv,\'/:—g&zZO)] Inv

it is enough to prove the validity of :
Invk [?7z2=0;v:=—cv] Inv
Inv [z=v,v=—g & 22> 0] Inv

Bouncing ball

Notations:

Inv=z>0A0<c<1Ag>0A2g7<2gH —V*

Sequents to prove:

WFESv =g &S0 Iny

Rule for sequential compositions

I'=[allp]P
' [a; f]P

(;)

To prove the validity of:
Invk [?7z2=0;v:=—=cv] Inv

it is enough to prove the validity of :
Inv [?72=0][v:=—=cv] Inv

Bouncing ball

Notations:

Inv=z>0A0<c<1Ag>0A2g7<2gH —V*

Sequents to prove:

WFTE =77 = =g & 2301 Inv

Rule for conditionals

rLOFP

(7)
[+ [?20]P

To prove the validity of:
Invi [7z2 =0][v := —cv] Inv

it is enough to prove the validity of :
Inv,z=0F [v:=—c¢v] Inv

Bouncing ball

Notations:

Inv=z>0A0<c<1Ag>0A2g7<2gH —V*

Sequents to prove:

IvF[Z=v,7==g & z=> 0] Inv

Rule for conditionals

['- P(x < e)
I'F[x:=e]P

(=)

To prove the validity of:
Inv,z=0F [v:=—=cv] Inv

it is enough to prove the validity of :
Inv,z=0F2z>0A0<c<1Ag>0A2gz<2gH — (—cv)*
which can be proved using the (RA) rule.

Bouncing ball

Notations:

Inv=z>0A0<c<1Ag>0A2g7<2gH —V*

Sequents to prove:

Rule for ssmplifying the postconditions

I'ElalP T'FlalO
I'E[alPAQ

(L1)

To prove the validity of:
Invk[z=v,v=—g & 2> 0] Inv

it is enough to prove the validity of :
Inv-[z=v,v=—¢g&2>20]2z2>0
InvE[z=v,v=—g & 7z20]0<c<L1Ag>0
Invk[z2=v,7V=—g & 2> 0] 2gz < 2gH —v?

Bouncing ball

Notations:

Inv=z>0A0<c<1Ag>0A2g7<2gH —V*

Sequents to prove:

InvkE[z2=v,v=—g&2z>0]0<c<1Ag>0
Invk [z=v,v=—g & z> 0] 29z < 2gH —v?

Rule for differential weakening

OFP
FF[x=e & O]P

(dW)

To prove the validity of:
Inv[z=v,v=—g & 2>0]z>20

it is enough to prove the validity of :
z20Fz2>20

which is obvious.

Bouncing ball

Notations:

Inv=z>0A0<c<1Ag>0A2g7<2gH —V*

Sequents to prove:

Rule for constant properties

'EP wwP)Nx=0
FF[x=e & QIP

(cst)

To prove the validity of:
InvE [z=v,v=—g & 72>20]0<c<1Ag>0

it is enough to prove the validity of :
nvEFO<c<1Ag>0

which is obvious.

What aboutInv - [Z=v, v = — g & z > 0] 2gz < 2gH — v*?

Invariant of a dynamaics, and Lie derivative

x=e& (0 =~ (?Q;x:=x+dt.e)*;?Q

[LOFInv Inv,OFInv(x < x+dt.e) Invk P
I'HF[x=e & QO]P

(dtl)

Assume that P = Inv = f > 0. We want something to ensure:

flw) >0= flw+dt.e(w) >0

It is enough to require that fis constant along the dynamics, that is, if i is a solution
of x = e, then K : t — f(y(?)) is constant, that is, its derivative is zero.

: 0 0
K=Y a—i(w(t)) =y a—i(w(t» e (w(D)

xeX xeX

0
So it is enough that the function Lg [= Z d_f . e, to be zero along the dynamics.
X

xeX

Rule for differential invariants

[LOFf>0 Th[x=e & Q]% f=0
FF[x=e & Q]f >0

(di)

To prove the validity of:
Invk[z=v,v=—g & z>0] 29z < 2gH —v*

it is enough to prove the validity of :
Inv,z > 0 2gz < 2gH —v*

which is obvious and of:
InvE[Z=v,v=—g & 72>20] Lo f=0

which is true after computation of the Lie derivative.

Bouncing ball

Notations:

Sequents to prove:

No more!

Keymaera X

https://web.keymaerax.org

