
Techniques de réécriture

TD n◦2 : Well quasi-orderings and ordering extensions

Those exercises are based on :
— S. Schmitz and P. Schnoebelen, Algorithmic aspects of WQO theory (lecture notes)
— F. Baader and T. Nipkov, Term rewriting and all that (book)
— J. Goubault-Larrecq, On Noetherian spaces (paper)

Definition. Some definitions from ordering theory :
— a quasi-ordering is a pair (A,≤) where A is a set and ≤ is a binary reflexive and transitive

relation on A
— given a quasi-ordering (A,≤), we note < the relation defined by :

x < y ⇔ x ≤ y ∧ y 6≤ x

— we say that a quasi-ordering (A,≤) is total if for every x, y ∈ A, x ≤ y or y ≤ x
— we say that a subset U of A is upward-closed if for every x ∈ U and every y ∈ A such

that x ≤ y then y ∈ U
— we say that x ∈ A is minimal iff there are no y ∈ A such that y < x
— we say that two elements x, y ∈ A are equivalent iff x ≤ y and y ≤ x (we may note x ≈ y)
— given a subset U of A, we note ↑ U the upward-closure of U i.e. {x ∈ A | ∃y ∈ U, y ≤ x}
— a linearization of (A,≤) is a total quasi-ordering (A,v) such that :

x ≤ y ⇒ x v y

x < y ⇒ x @ y

Definition (wqo1). A wqo is a quasi-ordering (A,≤) such that every infinite sequence (xi)i∈N
over A has an increasing pair i.e. there are i < j ∈ N such that xi ≤ xj .

Definition (wqo2). A wqo is a quasi-ordering (A,≤) such that every infinite sequence (xi)i∈N
over A has an infinite increasing subsequence i.e. there are i0 < i1 < . . . < ik < . . . ∈ N such
that xi0 ≤ xi1 ≤ . . . ≤ xik ≤ . . .

Definition (wqo3). A wqo is a quasi-ordering (A,≤) such that :
well-founded : there are no infinite strictly decreasing sequences i.e. no sequences x0 >

x1 > . . . > xk > . . . in A
no infinite antichains : there are no infinite subsets of A of mutually incomparable ele-

ments i.e. such that x 6≤ y and y 6≤ x

Property (lecture). wqo1, 2 and 3 are equivalent.

Exercise 1 :
Which ones are wqo ?
1) N, ≤
2) Z, ≤
3) N, | where | is the divisibility relation
4) prefix ordering on a finite alphabet
5) lexicographic ordering on {1, ..., n} i.e. a0...ak <lex b0...bm iff a0...ak is a prefix of b0...bm

or there is i ≤ min{n,m} such that for all 0 ≤ j < i, aj = bj and ai < bi



6) P(N), ⊆
7) P(N), v where U v V iff for all m ∈ V , there is n ∈ U such that n ≤ m
8) R = {(a, b) ∈ N2 | a < b} with (a, b) ≤ (a′, b′) iff (a = a′ ∧ b ≤ b′) ∨ b < a′

Solution:
1) Yes, it is total and well-founded.
2) No, (−n)n∈N is strictly decreasing.
3) No, the set of prime numbers is an infinite antichain.
4) For n = 1, yes, it is the example 1. For n > 2, no, (anb)n∈N is an infinite antichain.
5) For n = 1, yes, it is the example 1. For n > 2, no, (1n2)n∈N is strictly decreasing.
6) No, ({n})n∈N is an infinite antichain.
7) Yes, because U v V iff minU ≤ minV .
8) Yes. First, you have to check it is a quasi-ordering (do all the cases, this is not

difficult). Then, it is well founded because for every x, the set {y ∈ R | y ≤ x} is
finite. Let an antichain ((ai, bi))i∈I . By the first part of the definition of ≤, for all
i 6= j, ai 6= bi. Now assume that I = N. Then, by the previous remark, there is a i
such that b0 < ai which contradicts the fact it is an antichain.

Definition (product extension). Let (D1,≤1), ..., (Dn,≤n) be non-empty quasi-orderings.
Their product extension is the quasi ordering (D1 × ...×Dn,≤×) with :

(x1, ..., xn) ≤× (y1, ..., yn) ⇐⇒ ∀i, xi ≤i yi

Exercise 2 :
Prove that (D1,≤1), ..., (Dn,≤n) are well-founded (resp. a wqo) iff their product extension
is well-founded (resp. a wqo).

Solution:
well-founded, ⇒ : Take a strictly decreasing sequence (d1

1, ..., d
n
1 ) > ... > (d1

k, ..., d
n
k) >

.... For j ∈ {1, ..., n}, let Γj = {k ∈ N | djk >j d
j
k+1}. Then, by hypothesis,

n⋃
j=1

Γj = N.

So by the pigeonhole principle, there is a j such that Γj is infinite. Then (djk)k∈Γj
is

a strictly decreasing sequence in Dj . Absurd.
wqo, ⇒ : We will prove wqo2. Let A be an infinite sequence ((d1

k, ..., d
n
k))k∈N. We

construct an infinite subsequence of A by induction on j this way :
— Γ0 = A
— Assume Γj constructed. Then πj+1(Γj) where πi is the ith projection, is an

infinite sequence in Dj+1. So, by wqo2, there is an infinite subsequence Γj+1 of
Γj such that πj+1(Γj) is increasing.

Then Γn is an infinite increasing subsequence of A.
well-founded, ⇐ : Assume that you have an infinite strictly decreasing sequence x0 >i

x1 >i ... >i xk >i ... for some i. For j 6= i, take yj ∈ Dj 6= ∅.
Then ((y1, ..., yi−1, xk, yi+1, ..., yn))k∈N is an infinite strictly decreasing sequence in
the product extension. Absurd.

wqo, ⇐ : Idem with antichains.

Definition (lexicographic extension). Let (D1,≤1), ..., (Dn,≤n) be non-empty quasi-orderings.
Their lexicographic extension is the quasi ordering (D1 × ...×Dn,≤lex) with :

(x1, ..., xn) ≤lex (y1, ..., yn) ⇐⇒ (∀i, xi ≈i yi) ∨ (∃j, (∀i < j, xi ≈i yi) ∧ xj <j yj)

Exercise 3 :
Prove that (D1,≤1), ..., (Dn,≤n) are well-founded (resp. a wqo) iff their lexicographic ex-
tension is well-founded (resp. a wqo).



Solution:
well-founded, ⇒ : We prove it by induction on n. For n = 0, OK. Assume it true for

n− 1. Take a strictly decreasing sequence (d1
1, ..., d

n
1 ) > ... > (d1

k, ..., d
n
k) > .... Then,

(d1
k)k∈N is decreasing. So, there is a i1 such that for all k ≥ i1, d1

k ≈1 d
1
i1
. Then,

((d2
k, ..., d

n
k))k≥i1 is a strictly decreasing sequence. Absurd by induction hypothesis.

wqo, ⇒ : If two elements of the lexicographic extension are incomparable then one of
their components are incomparable. Then by the pigeonhole principle, any infinite
antichain gives rise two an infinite antichain in some component. Absurd.

⇐ : Same as the product.

Definition (multiset extension). Let (D,≤) be a partial-ordering. Its multiset extension is
the quasi-ordering (Mul(D),v) with Mul(D) is the set of finite multistep and M @ N iff
∃X, Y ∈Mul(D) :
— ∅ 6= X ⊆ N
— M = (N −X) + Y
— ∀y ∈ Y , ∃x ∈ X, x > y

Exercise 4 :
1) Prove that @ is irreflexive and transitive.
2) Prove that (D,≤) is well-founded iff its multiset extension is well-founded.

Solution:
1) irreflexive : If M @ M then necessarily X = Y 6= ∅. Then the last condition will

not be satisfied on a maximal element of Y (which exists because Y is finite).
transitive : Assume M @ M ′ with M = (M ′ − X) + Y and M ′ @ M ′′ with

M ′ = (M ′′ −X ′) + Y ′. Let X ′′ = (X − Y ′) +X ′ and Y ′′ = Y + (Y ′ −X). Then
M = (M ′′ −X ′′) + Y ′′ and satisfy the conditions.

2) Assume given an infinite strictly decreasing sequence M0 A M1 A ... A Mk A ... in
Mul(D). We construct a tree labelled in D t {>,⊥} like this :
— the root is labelled by >
— for every occurrence of every element of M0, construct a son of the root labelled

by this element. This is the step 0
— assume constructed the steps ≤ i. For every occurrence of every element of Xi

with Mi+1 = (Mi − Xi) + Yi, choose a node which has no son labelled by this
element (two different occurrences of the same element must correspond to dif-
ferent nodes). For each of those nodes, construct a son labelled by ⊥. For every
occurrence of every element y ∈ Yi , choose one the previous nodes which is
labelled by an element x ∈ Xi such that x > y and construct a son of this node
labelled by y. This is the step i+ 1.

To prove the correction of this construction, you can prove that at the step i, the
multiset of labels of leaves which are in D is exactly Mi. This tree is infinite because
at each step we had at least a node ⊥, as Xi is non-empty. It is finitely branching
because Yi is finite. So, by the König lemma, it has an infinite branch, which gives
an infinite strictly decreasing sequence in D. Absurd.

Exercise 5 :
Prove that a quasi-ordering is a wqo iff any increasing sequence U0 ⊆ U1 ⊆ . . . ⊆ Uk ⊆ . . .
of upward-closed subsets stabilizes i.e. there is p ∈ N such that for all i ∈ N, Up+i = Up.

Solution:
wqo4 ⇒ wqo1 : Take an infinite sequence x0, ..., xn, ... over A and define Ui =↑
{x0, ..., xi}. Then U0 ⊆ U1 ⊆ .... So there is k ∈ N such that Uk+1 = Uk i.e.
xk+1 ∈↑ {x0, ..., xk} i.e. there i ≤ k such that xi ≤ xk+1.



wqo1 ⇒ wqo4 : Assume that you have U0 ( U1 ( ... a strictly increasing sequence of
upward-closed subsets of A. For all i, take xi ∈ Ui+1 ⊆ Ui. Then (xi)i∈N∗ contradicts
wqo1 because the Ui are upward-closed.

Exercise 6 :
1) Show that every element of a well-founded quasi-ordering is larger than or equal to a

minimal element.
2) Prove that a quasi-ordering (A,≤) is a wqo iff every non-empty subset of A has at least

one minimal element and at most a finite number of minimal elements up to equivalence.
3) Prove that any upward-closed subset of a wqo can be written as ↑ {x1, ..., xn} for some

x1, ..., xn.

Solution:
1) Let x ∈ A well founded. Assume that there are no y minimal such that y ≤ x. We

construct an infinite strictly decreasing sequence by induction :
— x0 = x
— Assume that xi < xi−1 < ... < x0 = x are constructed. By hypothesis, xi is not

minimal, then there is xi+1 < xi.
2) ⇒) As a wqo is well founded, then all subset of a wqo is well founded. If this

subset is non-empty, then by 1), it has at least a minimal element. Assume that
there is an infinite number of minimal elements up to equivalence i.e. you have a
sequence (xi)i∈N with xi minimal and for i 6= j, with xi and xj non equivalent.
This means that either xi 6≤ xj either xj 6≤ xi. As they are minimal, xi and xj
are incomparable and then it gives an infinite antichain.

⇐) well founded : An infinite strictly decreasing sequence gives non-empty subset
which has no minimal element.

no infinite antichain : An infinite antichain gives an subset which has an in-
finite number of incomparable elements which are minimal in this subset.

3) Let U be upward-closed. By 2), it has a finite number of minimal elements up to
equivalence. Let x1, ..., xn be elements representing those equivalence class. Let us
prove that U =↑ {x1, ..., xn} :
⊆) U is well founded because A is, and so by 1), every element of U is greater than

a minimal element and so than a xi (because every minimal element is equivalent
to a xi).

⊇) All the xi belongs to U and U is upward-closed.

Exercise 7 :
1) Prove that a total quasi-ordering is a wqo iff it is well-founded.
2) Prove that every quasi-ordering has a linearization.

hint : use Zorn’s lemma
3) Prove that a quasi-ordering is a wqo iff all its linearizations are well-founded.

Solution:
1) A total quasi-ordering cannot have infinite anti chains.
2) Let Γ = {(A,v) |≤ ⊆ v ∧ < ⊆ @ ∧ ⊆ is a quasi-ordering}. It is an inductive set,

so has a maximal element (A,≺). In particular, ≺ is a quasi-ordering an to prove
it is linearization of (A,≤), we have to show that it is total. Suppose it is not. So
there are x 6= y such that x 6� y and y 6� x. Define �′= (� ∪{(x, y)})∗. Then �′ is a
quasi-ordering such that ≤ ⊆ � ⊆ �′. To have a contradiction, it remains to prove
that ≺ ⊆≺′. Assume α ≺ β. So α � β and β 6� α. Then α �′ β. Assume β �′ α,
this means that β � x and y � α. Thus, y � α � β � x which is absburd.

3) ⇒) Let � be a linearization of ≤. Assume that you have x1 � x2 � ..., then
x1 6≤ x2 6≤ ... which contradicts wqo1.

⇐) well founded : a strictly decreasing sequence for ≤ is also a strictly decreasing
sequence for any linearization (and there is at least one by 2))



no infinite antichain : assume that you have an infinite antichain (xi)i∈N. Let
≤′= (≤ ∪{(xj , xi) | i < j})∗. This is a quasi-ordering which satisfies :
— ≤ ⊆ ≤′
— < ⊆ <′ : if x ≤ y and y 6≤ x then x ≤′ y. Assume that y ≤′ x then there

are i < j such that y ≤ xj and xi ≤ x and so xi ≤ xj which is absurd.
So any linearization of ≤′ is a linearization of ≤. But ≤′ is not well founded
so one linearization obtained in 2) is not too which is absurd.

Definition. A bit of general topology :
— a topology on a setX is a set (of open subsets) O(X) ⊆ P(X) such that ∅ andX ∈ O(X)

and O(X) is closed by unions and finite intersections
— a topological space is a set with a topology on it
— given a quasi-ordering (A,≤), its Alexandrov’s topology is the one such that O(X) is the

set of upward-closed subsets of A
— a subset K of X is said to be compact if for every family (Ui)i∈I ⊆ O(X) such that

K ⊆
⋃
i∈I

Ui there a finite subset J of I such that K ⊆
⋃
i∈J

Ui

— we say that a topological space is Noetherian iff every open is compact

Exercise 8 :
1) Prove that the Alexandrov’s topology is a topology.
2) Prove that a quasi-ordering (A,≤) is a wqo iff A with its Alexandrov’s topology is Noe-

therian.

Solution:
1) Easy.
2) ⇒) Let U be an upward-closed and (Ui)i∈I be a family of upward-closed sets such

that U ⊆
⋃
i∈I

Ui. By exercise 3, U =↑ {x1, ..., xn} for some x1, ..., xn. Let ij

such that xj ∈ Uij and J = {ij | j ∈ {1, ..., n}}. As the Ui are upward-closed,
U ⊆

⋃
i∈J

Ui.

⇐) Given a sequence U1 ⊆ U2 ⊆ ... of upward-closed sets. Let U =
⋃
i∈N

Ui, which

is an upward-closed. By hypothesis, there are i1 < ... < ik such that U =⋃
i∈{i1,...,ik}

Ui and so U = Uik .


