
Techniques de réécriture

TD n◦1 : Well quasi-orderings

Those exercises are based on :
— S. Schmitz and P. Schnoebelen, Algorithmic aspects of WQO theory, lecture notes
— J. Goubault-Larrecq, On Noetherian spaces

Definition. Some definitions from ordering theory :
— a pre-ordering is a pair (A,≤) where A is a set and ≤ is a binary reflexive and transitive

relation on A
— given a pre-ordering (A,≤), we note < the relation defined by :

x < y ⇔ x ≤ y ∧ y 6≤ x

— we say that a pre-ordering (A,≤) is total if for every x, y ∈ A, x ≤ y or y ≤ x
— we say that a subset U of A is upward-closed if for every x ∈ U and every y ∈ A such

that x ≤ y then y ∈ U
— we say that x ∈ A is minimal iff there are no y ∈ A such that y < x
— we say that two elements x, y ∈ A are equivalent iff x ≤ y and y ≤ x
— given a subset U of A, we note ↑ U the upward-closure of U i.e. {x ∈ A | ∃y ∈ U, y ≤ x}
— a linearization of (A,≤) is a total pre-ordering (A,v) such that :

x ≤ y ⇒ x v y

x < y ⇒ x @ y

Definition (wqo1). A wqo is a pre-ordering (A,≤) such that every infinite sequence (xi)i∈N over
A has an increasing pair i.e. there are i < j ∈ N such that xi ≤ xj .

Definition (wqo2). A wqo is a pre-ordering (A,≤) such that every infinite sequence (xi)i∈N over
A has an infinite increasing subsequence i.e. there are i0 < i1 < . . . < ik < . . . ∈ N such that
xi0 ≤ xi1 ≤ . . . ≤ xik ≤ . . .

Definition (wqo3). A wqo is a pre-ordering (A,≤) such that :
well-founded : there are no infinite strictly decreasing sequences i.e. no sequences x0 >

x1 > . . . > xk > . . . in A
no infinite antichains : there are no infinite subsets of A of mutually incomparable ele-

ments i.e. such that x 6≤ y and y 6≤ x

Definition (wqo4). A wqo is a pre-ordering (A,≤) such that any increasing sequence U0 ⊆ U1 ⊆
. . . ⊆ Uk ⊆ . . . of upward-closed subsets of A stabilizes i.e. there is p ∈ N such that for all i ∈ N,
Up+i = Up.

Exercise 1 :
Prove the equivalence of the four definitions of wqo.
hint : you can use (prove it) this particular case of the infinite Ramsey’s theorem : let X be
a countable set, X2 be the set of all subsets of X of cardinal 2 and Σ be a finite set. Then,
for every function f : X2 −→ Σ, there is a infinite subset Y of X such that the restriction
fY : Y2 −→ Σ is constant.



Solution:
wqo2 ⇒ wqo1 : OK
wqo1 ⇒ wqo3 : OK
proof of the hint : Let us construct by induction on n ∈ N sets Yn and Zn such that

Yn is infinite and Zn ∩ Yn = ∅ :
— Y0 = X and Z0 = ∅
— Assume Yn and Zn constructed. Take an+1 ∈ Yn. Then, we have a partition of

Yn ⊆ {an+1} with the sets Yn+1,c = {a ∈ Yn ⊆ {an+1} | f({a, an+1}) = c} for
c ∈ Σ. As Σ is finite and Yn ⊆ {an+1} is infinite, there is at least a c ∈ Σ such
that Yn+1,c is infinite. Take, Yn+1 = Yn+1,c for this c and Zn+1 = Zn ∪ {an+1}.

By construction, Zn is of cardinal n and for all k < n,m, f({ak, an}) = f({ak, am} =
ck. Then, if we call Z =

⋃
n∈N

Zn which is countable, we have a partition of Z by the

sets Zc = {k ∈ N | ck = c} for c ∈ Σ. As Σ is finite, there is a c such that Zc is
infinite. Take Y = Zc for this c.

wqo3 ⇒ wqo2 : Let S be a infinite sequence x0, x1, ..., xn, ... over A. Define the
function f : S2 −→ {1, 2, 3} such that for every {xi, xj} with i < j :
— either xi ≤ xj then f({xi, xj}) = 1
— either xi > xj then f({xi, xj}) = 2
— either xi and xj are incomparable then f({xi, xj}) = 3
Then by the hint, there is a infinite set Y such that f is constant on Y2 :
— either its value is 1, then it gives what we want
— either its value is 2, then it gives an infinite strictly decreasing sequence which

contradicts well foundedness
— either its value is 3, then it gives an infinite anti chain which contradicts wqo3

wqo4 ⇒ wqo1 : Take an infinite sequence x0, ..., xn, ... over A and define Ui =↑
{x0, ..., xi}. Then U0 ⊆ U1 ⊆ .... So there is k ∈ N such that Uk+1 = Uk i.e.
xk+1 ∈↑ {x0, ..., xk} i.e. there i ≤ k such that xi ≤ xk+1.

wqo1 ⇒ wqo4 : Assume that you have U0 ( U1 ( ... a strictly increasing sequence of
upward-closed subsets of A. For all i, take xi ∈ Ui+1 ⊆ Ui. Then (xi)i∈N∗ contradicts
wqo1 because the Ui are upward-closed.

Exercise 2 :
Which ones are wqo ?
1) N, ≤
2) Z, ≤
3) N, | where | is the divisibility relation
4) prefix ordering on a finite alphabet
5) lexicographic ordering on {1, ..., n} i.e. a0...ak <lex b0...bm iff a0...ak is a prefix of b0...bm

or there is i ≤ min{n,m} such that for all 0 ≤ j < i, aj = bj and ai < bi
6) P(N), ⊆
7) P(N), v where U v V iff for all m ∈ V , there is n ∈ U such that n ≤ m
8) R = {(a, b) ∈ N2 | a < b} with (a, b) ≤ (a′, b′) iff (a = a′ ∧ b ≤ b′) ∨ b < a′

Solution:
1) Yes, it is total and well-founded.
2) No, (−n)n∈N is strictly decreasing.
3) No, the set of prime numbers is an infinite antichain.
4) For n = 1, yes, it is the example 1. For n > 2, no, (anb)n∈N is an infinite antichain.
5) For n = 1, yes, it is the example 1. For n > 2, no, (1n2)n∈N is strictly decreasing.
6) No, ({n})n∈N is an infinite antichain.
7) Yes, because U v V iff minU ≤ minV .
8) Yes. First, you have to check it is a pre-ordering (do all the cases, this is not difficult).

Then, it is well founded because for every x, the set {y ∈ R | y ≤ x} is finite. Let an
antichain ((ai, bi))i∈I . By the first part of the definition of ≤, for all i 6= j, ai 6= bi.



Now assume that I = N. Then, by the previous remark, there is a i such that b0 < ai
which contradicts the fact it is an antichain.

Exercise 3 :
1) Show that every element of a well-founded pre-ordering is larger than or equal to a

minimal element.
2) Prove that a pre-ordering (A,≤) is a wqo iff every non-empty subset of A has at least

one minimal element and at most a finite number of minimal elements up to equivalence.
3) Prove that any upward-closed subset of a wqo can be written as ↑ {x1, ..., xn} for some

x1, ..., xn.

Solution:
1) Let x ∈ A well founded. Assume that there are no y minimal such that y ≤ x. We

construct an infinite strictly decreasing sequence by induction :
— x0 = x
— Assume that xi < xi−1 < ... < x0 = x are constructed. By hypothesis, xi is not

minimal, then there is xi+1 < xi.
2) ⇒) As a wqo is well founded, then all subset of a wqo is well founded. If this

subset is non-empty, then by 1), it has at least a minimal element. Assume that
there is an infinite number of minimal elements up to equivalence i.e. you have a
sequence (xi)i∈N with xi minimal and for i 6= j, with xi and xj non equivalent.
This means that either xi 6≤ xj either xj 6≤ xi. As they are minimal, xi and xj
are incomparable and then it gives an infinite antichain.

⇐) well founded : An infinite strictly decreasing sequence gives non-empty subset
which has no minimal element.

no infinite antichain : An infinite antichain gives an subset which has an in-
finite number of incomparable elements which are minimal in this subset.

3) Let U be upward-closed. By 2), it has a finite number of minimal elements up to
equivalence. Let x1, ..., xn be elements representing those equivalence class. Let us
prove that U =↑ {x1, ..., xn} :
⊆) U is well founded because A is, and so by 1), every element of U is greater than

a minimal element and so than a xi (because every minimal element is equivalent
to a xi).

⊇) All the xi belongs to U and U is upward-closed.

Exercise 4 :
1) Prove that a total pre-ordering is a wqo iff it is well-founded.
2) Prove that every pre-ordering has a linearization.

hint : use Zorn’s lemma
3) Prove that a pre-ordering is a wqo iff all its linearizations are well-founded.

Solution:
1) A total pre-ordering cannot have infinite anti chains.
2) Let Γ = {(A,v) |≤ ⊆ v ∧ < ⊆ @ ∧ ⊆ is a pre-ordering}. It is an inductive set, so

has a maximal element (A,≺). In particular, ≺ is a pre-ordering an to prove it is
linearization of (A,≤), we have to show that it is total. Suppose it is not. So there
are x 6= y such that x 6� y and y 6� x. Define �′= (� ∪{(x, y)})∗. Then �′ is a
pre-ordering such that ≤ ⊆ � ⊆ �′. To have a contradiction, it remains to prove
that ≺ ⊆≺′. Assume α ≺ β. So α � β and β 6� α. Then α �′ β. Assume β �′ α,
this means that β � x and y � α. Thus, y � α � β � x which is absburd.

3) ⇒) Let � be a linearization of ≤. Assume that you have x1 � x2 � ..., then
x1 6≤ x2 6≤ ... which contradicts wqo1.

⇐) well founded : a strictly decreasing sequence for ≤ is also a strictly decreasing
sequence for any linearization (and there is at least one by 2))



no infinite antichain : assume that you have an infinite antichain (xi)i∈N. Let
≤′= (≤ ∪{(xj , xi) | i < j})∗. This is a pre-ordering which satisfies :
— ≤ ⊆ ≤′
— < ⊆ <′ : if x ≤ y and y 6≤ x then x ≤′ y. Assume that y ≤′ x then there

are i < j such that y ≤ xj and xi ≤ x and so xi ≤ xj which is absurd.
So any linearization of ≤′ is a linearization of ≤. But ≤′ is not well founded
so one linearization obtained in 2) is not too which is absurd.

Definition. A bit of general topology :
— a topology on a setX is a set (of open subsets) O(X) ⊆ P(X) such that ∅ andX ∈ O(X)

and O(X) is closed by unions and finite intersections
— a topological space is a set with a topology on it
— given a pre-ordering (A,≤), its Alexandrov’s topology is the one such that O(X) is the

set of upward-closed subsets of A
— a subset K of X is said to be compact if for every family (Ui)i∈I ⊆ O(X) such that

K ⊆
⋃
i∈I

Ui there a finite subset J of I such that K ⊆
⋃
i∈J

Ui

— we say that a topological space is Noetherian iff every open is compact

Exercise 5 :
1) Prove that the Alexandrov’s topology is a topology.
2) Prove that a pre-ordering (A,≤) is a wqo iff A with its Alexandrov’s topology is Noethe-

rian.

Solution:
1) Easy.
2) ⇒) Let U be an upward-closed and (Ui)i∈I be a family of upward-closed sets such

that U ⊆
⋃
i∈I

Ui. By exercise 3, U =↑ {x1, ..., xn} for some x1, ..., xn. Let ij

such that xj ∈ Uij and J = {ij | j ∈ {1, ..., n}}. As the Ui are upward-closed,
U ⊆

⋃
i∈J

Ui.

⇐) Given a sequence U1 ⊆ U2 ⊆ ... of upward-closed sets. Let U =
⋃
i∈N

Ui, which

is an upward-closed. By hypothesis, there are i1 < ... < ik such that U =⋃
i∈{i1,...,ik}

Ui and so U = Uik .


