Partial Higher Dimensional Automata

Session “Young Mathematicians’ Challenge”

Jérémy Dubut

National Institute of Informatics
Japanese-French Laboratory for Informatics
Another aspect of CPS: Concurrency

Concurrent system:
A system with different agents accomplishing their tasks simultaneously, while communicating, competing on resources, ...

Examples:
- OS
- Computer (multi-core)
- Network
- CPS
- ...
Many models of concurrency

- Mutual-exclusion model (Dijkstra, 1965)
- Petri nets (Petri, 1962)
- Process algebra
 - Communicating Sequential Processes (Hoare, 1976)
 - Calculus of Communicating Systems (Milner, 1980)
 - π-calculus (Milner, Parrow, Walker, 1992)
- Parallel Random-Access Machine (Fortune, Wyllie, Goldshlager, 1974)
- Actor model (Hewitt, Bishop, Steiger, 1973)
- Bulk Synchronous Parallel (Valiant, 1990)
- Tuple spaces, Linda (Galernter, Carriero, 1986)
- Simple Concurrent Object Oriented Programming (Meyer, 1993)
- Reo Coordination Language (Arbab, 2004)
- ...

Interleaving concurrency...

\[X := 0 \parallel Y := 1 \approx (X := 0 ; Y := 1) + (Y := 1 ; X := 0) \]

Two actions in parallel \(\approx \)
doing them sequentially, in any order, produces the same result
... vs true concurrency

Action refinement: “X := 0” and “Y := 1” are not atomic!
Many other executions between the two interleaved ones

==> Abstraction: there is a continuity of executions in-between
A geometric model of true concurrency

Higher Dimensional Automata
Precubical sets

A precubical set is:
- a collection of sets \((X_n)_{n \in \mathbb{N}}\),
- a collection of functions \((\partial^\alpha_{i,n} : X_n \rightarrow X_{n-1})_{n > 0, 1 \leq i \leq n, \alpha \in \{0,1\}}\)

satisfying for \(i > j\),
\[
\partial^\beta_{j,n} \circ \partial^\alpha_{i,n+1} = \partial^\alpha_{i-1,n} \circ \partial^\alpha_{j,n+1}
\]

Directed graph:
- \(X_0\) = set of vertices,
- \(X_1\) = set of edges,
- \(X_{n>1}\) = \(\emptyset\),
- \(\partial^0_{1,1}\) = source function,
- \(\partial^1_{1,1}\) = target function,
- equations are trivial.
A Higher Dimensional Automata is:

- a precubical set \((X, \partial)\),
- an initial state \(i_0 \in X_0\),
- a labelling function \(\lambda : X_1 \rightarrow \Sigma\)

satisfying for every \(c \in X_2\):

\[
\lambda(\partial_{i,2}^1(c)) = \lambda(\partial_{i,2}^0(c))
\]
HDA, categorically

The category of HDA is equivalent to the following double slice category of the category of presheaves over the cube category:

$$1/[\square^{op}, \text{Set}]/\Sigma$$
Allowing partiality

Category theory wins
Extending HDA?

How would you model: “Actions a and b can be done at the same time, but a must start before b.”?

States where b has started but not a. Those must be removed.
In an elegant way

The category of partial HDA is the following double slice category of the category of lax functors over the cube category:

$$1/Lax(\square^{op}, pSet)/\Sigma$$

In short: replace some functions (corresponding to the face maps) by partial functions
In an ugly way

A **partial precubical set** is:
- a collection of sets \((X_n)_{n \in \mathbb{N}}\),
- a collection of *partial* functions \((\partial^{\alpha_1,\ldots,\alpha_k}_{i_1<\ldots<i_k,n} : X_n \to X_{n-k})_{n>0, 1 \leq k \leq n, \alpha_i \in \{0,1\}}\)

satisfying for \(i > j\),

\[
\partial^{\beta_1,\ldots,\beta_n}_{j_1<\ldots<j_n} \circ \partial^{\alpha_1,\ldots,\alpha_m}_{i_1<\ldots<i_m} \subseteq \partial^{\gamma_1,\ldots,\gamma_p}_{k_1<\ldots<k_p}
\]

A **partial Higher Dimensional Automata** is:
- a **partial** precubical set \((X, \partial)\),
- an initial state \(i_0 \in X_0\),
- a collection of labelling functions \((\lambda_n : X_n \to \Sigma^n)_{n \in \mathbb{N}}\)

satisfying for every \(c \in X_n\):

\[
\lambda_{n-1}(\partial^1_{i,n}(c)) = \lambda_{n-1}(\partial^0_{i,n}(c))
\]
So... now what?

- We have a geometric model of true concurrency.
 \[HDA, pHDA \rightarrow \text{Top, dTop} \]

- We can use tools from mathematics (algebraic topology) to study those models.

- This gave rise to a new mathematical field, the “directed algebraic topology”

Come to see my poster to see what this is, and what we can do with algebraic topology in true concurrency!