Fixed-Point Theorems for Non-Transitive Relations

54th TRS meeting 15th-17th of March 2021

Jérémy Dubut^{1,2}, Akihisa Yamada³ ¹National Institute of Informatics ²Japanese-French Laboratory of Informatics ³Cyber Physical Security Research Center, AIST

This work is partly supported by ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), JST; and by Grant-in-aid No. 19K20215, JSPS.

Introduction

- Interactive Theorem Proving is appreciated for reliability
- But it is also engineering tool for mathematics (esp. Isabelle/jEdit)
 - refactoring proofs and claims
 - sledgehammer
 - quickcheck/nitpick(/nunchaku)
 - locales for organising concepts
- We develop an Isabelle library of order theory (as a case study)
 ⇒ we could generalise many known results, like:
 - completeness conditions: duality and relationships
 - fixed-point theorems for monotone functions (Knaster-Tarski, and many others)
 - fixed-point theorems for inflationary functions (Bourbaki-Witt)
 - iterative fixed-point theorems for monotone functions (Kleene, and others)

Why giving this talk at a TRS meeting?

- Order theory is just a case study, the methodology could also be used for rewriting relations
- Some concepts of order theory make sense for rewriting relations
 - confluence \equiv existence of bounds
 - Knuth-Bendix completion \equiv adding sups in the relation
 - termination \equiv the reverse relation is well-founded
- Complete relations and sups are crucial for infinite term rewriting
- Getting rid of assumptions can be useful for more involved techniques

• A. Yamada, J. Dubut. Complete Non-Orders and Fixed Points. In ITP'19.

https://drops.dagstuhl.de/opus/volltexte/2019/11085/pdf/LIPIcs-ITP-2019-30.pdf

• J. Dubut, A. Yamada. Fixed Point Theorems for Non-Transitive Relations. LMCS. To appear.

https://arxiv.org/pdf/2009.13065.pdf

• Entry in the Archive of Formal Proofs

https://www.isa-afp.org/entries/Complete_Non_Orders.html

- set (A) + binary relation (\sqsubseteq)
- reflexive $\Leftrightarrow x \sqsubseteq x$
- **transitive** $\Leftrightarrow x \sqsubseteq y$ and $y \sqsubseteq z$ implies $x \sqsubseteq z$
- antisymmetric $\Leftrightarrow x \sqsubseteq y$ and $y \sqsubseteq x$ implies x = y

Partial order

• set (A) + binary relation (\Box) **locale** related_set = fixes A :: "a set" and less_eq :: "a \Rightarrow 'a \Rightarrow bool" (infix " \sqsubseteq " 50) • reflexive $\Leftrightarrow x \sqsubset x$ **locale** reflexive = related set +assumes refl[intro]: " $x \in A \implies x \sqsubseteq x$ " • transitive $\Leftrightarrow x \sqsubseteq y$ and $y \sqsubseteq z$ implies $x \sqsubseteq z$ **locale** transitive = related set +assumes trans[trans]: " $x \sqsubseteq y \Longrightarrow y \sqsubseteq z \Longrightarrow x \in A \Longrightarrow y \in A \Longrightarrow z \in A \Longrightarrow x \sqsubseteq z$ " • antisymmetric $\Leftrightarrow x \sqsubseteq y$ and $y \sqsubseteq x$ implies x = y**locale** antisymmetric = related_set + assumes antisym: " $x \sqsubseteq y \Longrightarrow y \sqsubseteq x \Longrightarrow x \in A \Longrightarrow y \in A \Longrightarrow x = y$ "

Partial order

Quasi order

Quasi order

Pseudo order (Skala 71)

```
• set (A) + binary relation (\Box)
      locale related_set =
         fixes A :: "a set" and less_eq :: "a \Rightarrow 'a \Rightarrow bool" (infix "\sqsubseteq" 50)
• reflexive \Leftrightarrow x \sqsubset x
      locale reflexive = related set +
          assumes refl[intro]: "x \in A \implies x \sqsubset x"
• transitive \Leftrightarrow x \sqsubseteq y and y \sqsubseteq z implies x \sqsubseteq z
       locale transitive = related set +
          assumes trans[trans]: "x \sqsubseteq y \Longrightarrow y \sqsubseteq z \Longrightarrow x \in A \Longrightarrow y \in A \Longrightarrow z \in A \Longrightarrow x \sqsubseteq z"
• antisymmetric \Leftrightarrow x \sqsubseteq y and y \sqsubseteq x implies x = y
       locale antisymmetric = related_set +
          assumes antisym: "x \sqsubseteq y \Longrightarrow y \sqsubseteq x \Longrightarrow x \in A \Longrightarrow y \in A \Longrightarrow x = y"
```

Pseudo order (Skala 71)

Hierarchy of locales

You can easily add termination, confluence, ... into this picture

- Data:
 - A relation (A, \sqsubseteq)
 - A function $f: A \to A$
- Assumptions:
 - (A, \sqsubseteq) is an "order"
 - f interacts with \sqsubseteq
 - Some sups for \sqsubseteq exist (completeness)
- Conclusions:
 - There exists a fixpoint f(x) = x
 - There is a least fixpoint
 - The set of fixpoints is complete

- Data:
 - A relation (A, \sqsubseteq)
 - A function $f: A \to A$
- Assumptions:
 - (A, \sqsubseteq) is an "order"
 - f interacts with \sqsubseteq

Usually: partial order Here: pseudo order or even less

- Some sups for \sqsubseteq exist (completeness)
- Conclusions:
 - There exists a fixpoint f(x) = x
 - There is a least fixpoint
 - The set of fixpoints is complete

- Data:
 - A relation (A, \sqsubseteq)
 - A function $f: A \to A$
- Assumptions:
 - (A, \sqsubseteq) is an "order"
 - f interacts with \sqsubseteq
 - Some sups for \sqsubseteq exist (completeness)
- Conclusions:
 - There exists a fixpoint f(x) = x
 - There is a least fixpoint
 - The set of fixpoints is complete

• Monotone

$$\forall x, y \in A, x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$$

- Inflationary $\forall x \in A, x \sqsubseteq f(x)$
- Continuous

$f(\sup C) = \sup (f(C))$ for some C

Example 1: if true for all C omega chains, f is omega continuous Example 2: if true for all directed sets, f is Scott continuous

• Monotone $\forall x, y \in A, x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$

Ex: Knaster-Tarski

- Inflationary $\forall x \in A, x \sqsubseteq f(x)$
- Continuous

 $f(\sup C) = \sup (f(C))$ for some C

Example 1: if true for all C omega chains, f is omega continuous Example 2: if true for all directed sets, f is Scott continuous

- Monotone $\forall x, y \in A, x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$
- Inflationary $\forall x \in A, x \sqsubseteq f(x)$
- Continuous

 $f(\sup C) = \sup(f(C))$ for some C

Example 1: if true for all C omega chains, f is omega continuous Example 2: if true for all directed sets, f is Scott continuous **Ex: Knaster-Tarski**

Ex: Bourbaki-Witt

- Monotone $\forall x, y \in A, x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$
- Inflationary $\forall x \in A, x \sqsubseteq f(x)$
- Continuous

 $f(\sup C) = \sup (f(C))$ for some C

Example 1: if true for all C omega chains, f is omega continuous Example 2: if true for all directed sets, f is Scott continuous **Ex: Knaster-Tarski**

Ex: Bourbaki-Witt

Ex: Kleene

- Data:
 - A relation (A, \sqsubseteq)
 - A function $f: A \to A$
- Assumptions:
 - (A, \sqsubseteq) is an "order"
 - f interacts with \sqsubseteq
 - Some sups for \sqsubseteq exist (completeness)
- Conclusions:
 - There exists a fixpoint f(x) = x
 - There is a least fixpoint
 - The set of fixpoints is complete

Extreme bounds for relations

• *b* is a bound of *X* for $\sqsubseteq \Leftrightarrow \forall x \in X, x \sqsubseteq b$

definition "bound X (\sqsubseteq) $b \equiv \forall x \in X. \ x \sqsubseteq b$ "

• *b* is an extreme element of *X* for $\sqsubseteq \Leftrightarrow$ $b \in X$ and $\forall x \in X, x \sqsubseteq b$

definition "extreme $X (\sqsubseteq) e \equiv e \in X \land (\forall x \in X. \ x \sqsubseteq e)$ "

• *b* is an extreme bound of *X* for $\sqsubseteq \Leftrightarrow$ *b* is a bound of *X* for \sqsubseteq and for all bounds *b'* of *X* for \sqsubseteq , *b* \sqsubseteq *b'*

abbreviation "extreme_bound $A (\sqsubseteq) X \equiv$ extreme $\{b \in A. \text{ bound } X (\sqsubseteq) b\} (\sqsupseteq)$ "

Extreme bounds for relations

• *b* is a bound of *X* for $\sqsubseteq \Leftrightarrow \forall x \in X, x \sqsubseteq b$

definition "bound $X (\sqsubseteq) b \equiv \forall x \in X. \ x \sqsubseteq b$ "

sumptions • b is an extreme element of X for $b \in X$ and $\forall x \in X, x \sqsubset$

> $X \land (\forall x \in X. \ x \sqsubseteq e)$ " **definition** "extreme X

b is <u>an</u> extreme of X for $\sqsubseteq \Leftrightarrow$ X for \sqsubseteq and b is a b ids b' of X for \sqsubseteq , $b \sqsubseteq b'$ for all

abbreviation "extreme_bound $A (\sqsubseteq) X \equiv$ extreme $\{b \in A. \text{ bound } X (\sqsubseteq) b\} (\sqsupseteq)$ "

Fixed-Point Theorems for Non-Transitive Relations Jérémy Dubut (NII & JFLI) 34th TRS meeting (15-17/03/21)

- An extreme bound of the singleton {*x*}:
 - may not exist
 - or if it exists, it may not be equal to x itself

• Extreme elements and extreme bound are not unique If *c* and *d* are extreme elements of the same set then $c \sim d$, that is $c \sqsubseteq d$ and $d \sqsubseteq c$

• *c* being an (extreme) bound of *X* and $c \sqsubseteq d$ do not imply that *d* is a bound of *X*

- An extreme bound of the singleton $\{x\}$.
 - may not ex Equivalent to reflexivity
 - or if it exists, it may not be equal to x itself

• Extreme elements and extreme bound are not unique If *c* and *d* are extreme elements of the same set then $c \sim d$, that is $c \sqsubseteq d$ and $d \sqsubseteq c$

• *c* being an (extreme) bound of *X* and $c \sqsubseteq d$ do not imply that *d* is a bound of *X*

- An extreme bound of the singleton $\{x\}$.
 - may not ex Equivalent to reflexivity
 or if it exists, it may not be equal to x itself

- Extreme **Equivalent to antisymmetry** $\sqsubseteq d$ and $d \sqsubseteq c$
- c being an (extreme) bound of X and $c \sqsubseteq d$ do not imply that d is a bound of X

- An extreme bound of the singleton $\{x\}$.
 - may not exists, it may not be equal to x itself

• Extreme **Equivalent to antisymmetry** $\Box d$ and $d \Box c$

• *c* being an (that *d* is a be **Equivalent to transitivity** 1mply What about rewriting relations?

• Confluence using bounds:

 \sqsubseteq is confluent iff every set { $x \sqsubseteq y, z$ } has a bound

• Extreme elements are normal forms

• What about extreme bounds?

Completeness assumptions

• Knaster-Tarski: all the subsets have a sup

• Bourbaki-Witt: all the chains have a sup

• Pataraia: all the directed sets have a sup

• Kleene: all the omega chain have a sup

Generalisation and instantiation

• A relation (*A*, ⊑) is *C*-complete, for *C* a class of sets, if all subsets of *A* in *C* has an extreme bound

definition complete ("_-complete" [999]1000) where " \mathcal{C} -complete $A (\sqsubseteq) \equiv \forall X \subseteq A. \ X \in \mathcal{C} \longrightarrow (\exists s. \text{ extreme_bound } A (\sqsubseteq) X s)$ "

• Chains:

locale connex = related_set + assumes " $x \in A \Longrightarrow y \in A \Longrightarrow x \sqsubseteq y \lor y \sqsubseteq x$ "

• Directed sets:

definition "directed $X (\sqsubseteq) \equiv \forall x \in X. \ \forall y \in X. \ \exists z \in X. \ x \sqsubseteq z \land y \sqsubseteq z$ "

• Omega chains:

definition "omega_chain $X (\sqsubseteq) \equiv X \in \{\text{range } c \mid c :: \text{nat} \Rightarrow 'a. \text{ monotone } (\leq) (\sqsubseteq) c\}$ "

Completeness assumptions

• Knaster-Tarski: all the subsets have a sup

"UNIV-complete $A (\sqsubseteq)$ "

• Bourbaki-Witt: all the chains have a sup

"{X. connex $X (\sqsubseteq)$ }-complete $A (\sqsubseteq)$ "

• Pataraia: all the directed sets have a sup

"{X. directed X (\sqsubseteq)}-complete A (\sqsubseteq)"

• Kleene: all the omega chain have a sup

"{X. omega_chain $X (\sqsubseteq)$ }-complete $A (\sqsubseteq)$ "

Well-orderedness

• Well-related set: every non-empty subset has a least element

locale well_related_set = related_set + assumes " $X \subseteq A \Longrightarrow X \neq \{\} \Longrightarrow \exists e. \text{ extreme } X (\sqsupseteq) e$ "

• Well-related sets are chains:

sublocale well_related_set \subseteq connex

• Well-related sets are well-founded:

 $"\forall a \in A. (\forall x \in A. (\forall y \in A. y \sqsubset x \longrightarrow P y) \longrightarrow P x) \longrightarrow P a"$

 $x \sqsubset y \equiv x \sqsubseteq y \land y \not\sqsubseteq x$

• Completeness w.r.t. well-related sets is enough!
Well-orderedness

FP theorems for monotone maps

paper	reflexivity	transitivity	antisym.	complete w.r.t.	existence	least	complete	ordinals	axiom of choice
Knaster Tarski	\checkmark	\checkmark	\checkmark	UNIV	\checkmark	\checkmark	\checkmark		
Abian Brown	\checkmark	\checkmark	\checkmark	wf chains	\checkmark	X	X		
Markowsy	\checkmark	\checkmark	\checkmark	chains	\checkmark	\checkmark	\checkmark	\checkmark	
Pataraia	\checkmark	\checkmark	\checkmark	directed sets	\checkmark	\checkmark	\checkmark		
Bhatta George	\checkmark	X	\checkmark	wf chains	\checkmark	\checkmark	\checkmark	\checkmark	
Stouti Maaden	\checkmark	X	\checkmark	UNIV	\checkmark	\checkmark	X		
Grall	\checkmark	\checkmark	\checkmark	chains	\checkmark	\checkmark	\checkmark		\checkmark
DY v.1	X	X	\checkmark	UNIV	\checkmark	\checkmark	\checkmark		
DY v.2	X	X	\checkmark	well-related⊆C & closure prop.	\checkmark	\checkmark	\checkmark		

FP theorems for inflationary maps

paper	reflexivity	transitivity	antisym.	complete w.r.t.	existence	ordinals	axiom of choice
Bourbaki Witt		\checkmark	\checkmark	chains	\checkmark	~	
Abian Brown	✓	\checkmark	\checkmark	wf chains	\checkmark		
Grall	\checkmark	\checkmark	\checkmark	chains	\checkmark		
DY v.1	X	X	\checkmark	UNIV	\checkmark		
DY v.2	\checkmark	X	\checkmark	well-related sets	\checkmark		

Iterative FP theorems

paper	reflexivity	transitivity	antisym.	continuity	complete w.r.t.	existence	least
Kantorovitch	\checkmark	\checkmark	\checkmark	omega	UNIV	\checkmark	\checkmark
Tarski	\checkmark	\checkmark	\checkmark	countably distributive	countable sets	\checkmark	\checkmark
Kleene	\checkmark	\checkmark	✓	Scott	directed sets	\checkmark	\checkmark
Mashburn	\checkmark	\checkmark	\checkmark	omega	omega chains	\checkmark	\checkmark
DY	X	X	\checkmark	omega	omega chains	\checkmark	\checkmark

Why antisymmetry cannot be avoided?

Why antisymmetry cannot be avoided?

\sqsubseteq is complete reflexive and transitive, f is monotone, inflationary and continuous, but no fixpoints

Every proof in the literature prove

the existence of a (least) quasi fixpoint

 $x \sim f(x)$, i.e., $x \sqsubseteq f(x)$ and $f(x) \sqsubseteq x$

and use antisymmetry to conclude it is a fixpoint

Can we avoid antisymmetry?

\sqsubseteq is complete, *f* is monotone, but no least fixpoints

Attractivity

If $x \sim y$ and $z \sqsubseteq y$ then $z \sqsubseteq x$ If $x \sim y$ and $x \sqsubseteq z'$ then $y \sqsubseteq z'$

sublocale transitive \subseteq attractive

sublocale antisymmetric \subseteq attractive

Without antisymmetry

attractivity	map	Complete w.r.t.	existence	least	complete
X	monotone	UNIV	\checkmark		
Χ	inflationary	UNIV	\checkmark		
\checkmark	monotone	UNIV	\checkmark	\checkmark	\checkmark
\checkmark	monotone	well-related sets	\checkmark	\checkmark	
\checkmark	monotone	well-related⊆C & closure prop.	\checkmark	\checkmark	\checkmark
\checkmark	omega continuous	omega chains	\checkmark	\checkmark	

Without antisymmetry

attractivity	map	Complete w.r.t.	existence	least	complete
X	monotone	UNIV	\checkmark		
X	inflationary	UNIV	\checkmark		
\checkmark	monotone	UNIV	\checkmark	\checkmark	\checkmark
\checkmark	monotone	well-related sets	\checkmark	\checkmark	
\checkmark	monotone	well-related⊆C & closure prop.	\checkmark	\checkmark	\checkmark
\checkmark	omega continuous	omega chains	\checkmark	\checkmark	

theorem attract_mono_imp_fp_qfp_complete: **assumes** "attractive $A (\sqsubseteq)$ " **and** "C-complete $A (\sqsubseteq)$ " **and** " $\forall X \subseteq A$. well_related_set $X (\sqsubseteq) \longrightarrow X \in C$ " **and** extend: " $\forall X \in C$. $\forall Y \in C$. $X \sqsubseteq^s Y \longrightarrow X \cup Y \in C$ " **and** "monotone_on $A (\sqsubseteq) (\sqsubseteq) f$ " **and** " $P \subseteq \{x \in A. \ f \ x = x\}$ " **shows** "C-complete ($\{q \in A. \ f \ q \sim q\} \cup P$) (\sqsubseteq)"

Main statement

theorem attract_mono_imp_fp_qfp_complete: **assumes** "attractive $A (\sqsubseteq)$ " **and** "C-complete $A (\sqsubseteq)$ " **and** " $\forall X \subseteq A$. well_related_set $X (\sqsubseteq) \longrightarrow X \in C$ " **and** extend: " $\forall X \in C$. $\forall Y \in C$. $X \sqsubseteq^s Y \longrightarrow X \cup Y \in C$ " **and** "monotone_on $A (\sqsubseteq)$ (\Box) f" **and** " $P \subseteq \{x \in A. f \ x = x\}$ " **shows** "C-complete ($\{q \in A. f \ q \sim q\} \cup P$) (\sqsubseteq)" True for all classes C mentioned here

Step 1: defining derivations

Assumptions: None

Idea: derivation trees [Grall'10]

Intuition: the derivable elements are of the form $f^{\alpha}(\perp)$ for some ordinal α Proof:

1.
$$D = \{x \, x \text{ is derivable}\}$$
 is a chain, and $c = \sup(D)$

- 2. $c \sqsubseteq f(c)$ (easy proof)
- 3. *c* is derivable (by **Lim**)
- 4. f(c) is derivable (by **Succ**), and $f(c) \sqsubseteq c$

Idea: derivation trees [Grall'10]

Intuition: the derivable elements are of the form $f^{\alpha}(\perp)$ for some ordinal α Proof:

- 1. $D = \{x \, x \text{ is derivable}\}$ is a chair This easily fails when \sqsubseteq is not an order
- 2. $c \sqsubseteq f(c)$ (easy proof)
- 3. *c* is derivable (by **Lim**)
- 4. f(c) is derivable (by **Succ**), and $f(c) \sqsubseteq c$

Idea: derivation trees [Grall'10]

Intuition: the derivable elements are of the form $f^{\alpha}(\perp)$ for some ordinal α Proof:

- 1. $D = \{x \, x \text{ is derivable}\}$ is a chair This easily fails when \sqsubseteq is not an order
- 2. $c \sqsubseteq f(c)$ (easy proof)
- 3. *c* is derivable (by Lim) This uses the axiom of choice
- 4. f(c) is derivable (by **Succ**), and $f(c) \sqsubseteq c$

definition "derivation $X \equiv X \subseteq A \land$ well_ordered_set $X (\sqsubseteq) \land$ $(\forall x \in X. \text{ let } Y = \{y \in X. y \sqsubset x\} \text{ in} (\exists y. \text{ extreme } Y (\sqsubseteq) y \land x = f y) \lor (f `Y \subseteq Y \land \text{ extreme_bound } A (\sqsubseteq) Y x))"$

Step 2: contructing a quasi fixpoint using derivations

Assumptions:

- \sqsubseteq is antisymmetric
- If *x* is derivable, then $f(x) \sqsubseteq f(x)$
- If x and y are derivable, and if $x \sqsubseteq y$ then $x \sqsubseteq f(y)$
- 🔄 is well-complete

Step 2: contructing a quasi fixpoint using derivations

Assumptions:

- \Box is antisymmetric
- If x is derivable, then $f(x) \sqsubseteq f(x)$ True if \sqsubseteq is reflexive
- If x and y are derivable, and if $x \sqsubseteq y$ then $x \sqsubseteq f(y)$
- 🔄 is well-complete

Step 2: contructing a quasi fixpoint using derivations

Assumptions:

- \Box is antisymmetric
- If x is derivable, then $f(x) \sqsubseteq f(x)$ True if \sqsubseteq is reflexive
- If x and y are derivable, and if $x \sqsubseteq y$ then $x \sqsubseteq f(y)$ True if \sqsubseteq is transitive
- 🔄 is well-complete

and f is inflationary

Goal

The main task is to prove:

```
definition "derivable x \equiv \exists X. derivation X \land x \in X"
```

lemma derivation_derivable: "derivation $\{x. \text{ derivable } x\}$ "

Indeed, together with (elementary proofs, 68 and 28 lines):

```
lemma derivable_closed:

assumes "derivable x" shows "derivable (f x)"

lemma derivation_lim:

assumes "derivation P" and "f `P \subseteq P" and "extreme_bound A (\sqsubseteq) P p"

shows "derivation (P \cup{p})"
```

We can conclude the existence of a fixpoint (elementary proof, 14 lines):

```
lemma sup_derivable_fp:

assumes "extreme_bound A (\sqsubseteq) \{x. \text{ derivable } x\} p"

shows "f p = p"
```

The main task is to prove:

```
definition "derivable x \equiv \exists X. derivation X \land x \in X"
```

lemma derivation_derivable: "derivation $\{x. \text{ derivable } x\}$ "

Indeed, together with (elementary proofs, 68 and 28 lines):

We can conclude the existence of a fixpoint (elementary proof, 14 lines):

```
lemma sup_derivable_fp:

assumes "extreme_bound A (\sqsubseteq) \{x. \text{ derivable } x\} p"

shows "f p = p"
```

interpretation derivable: well_ordered_set "{x. derivable x}" "(\sqsubseteq)"

The main trick to avoid the axiom of choice is to use:

lemma closed_UN_well_founded: **assumes** " $\forall X \in \mathcal{X}$. well_founded $X (\Box) \land (\forall x \in X. \forall y \in \bigcup \mathcal{X}. y \Box x \longrightarrow y \in X)$ " **shows** "well_founded $(\bigcup \mathcal{X}) (\Box)$ "

With the collection $\mathcal X$ of derivations.

interpretation derivable: well_ordered_set "{x. derivable x}" "(\sqsubseteq)"

The main trick to avoid the axiom of choice is to use:

shows " $(x \sqsubset y \land x \in Y) \lor x = y \lor (y \sqsubset x \land y \in X)$ "

interpretation derivable: well_ordered_set "{x. derivable x}" "(\sqsubseteq)"

The main trick to avoid the axiom of choice is to use:

lemma derivations_cross_compare: **assumes** "derivation X" and "derivation Y" and " $x \in X$ " and " $y \in Y$ " **shows** " $(x \sqsubset y \land x \in Y) \lor x = y \lor (y \sqsubset x \land y \in X)$ "

Hard proof (204 lines), by double induction on x and y and case distinctions

Some arguments rely on "useful" derivations used by [Grall'10] (83 lines from the 210):

lemma derivation_useful: assumes "derivation X" and " $x \in X$ " and " $y \in X$ " and " $x \sqsubset y$ " shows " $f \ x \sqsubseteq y$ "

Step 3: proving leastness using monotonicity

Assumptions:

- \sqsubseteq is antisymmetric
- *f* is monotone
- \sqsubseteq is well-complete

Trivial (9 lines): a derivation is well_related so reflexive

```
lemma mono_imp_derivation_f_refl:

assumes "monotone_on A (\sqsubseteq) (\sqsubseteq) f"

shows "\forall X x. derivation X \longrightarrow x \in X \longrightarrow f x \sqsubseteq f x"
```

Easy (35 lines): by induction on x and case distinction

lemma mono_imp_derivation_infl: **assumes** "monotone_on $A (\sqsubseteq) (\sqsubseteq) f$ " **shows** " $\forall X x y$. derivation $X \longrightarrow x \in X \longrightarrow y \in X \longrightarrow x \sqsubseteq y \longrightarrow x \sqsubseteq f y$ "
Existence of a least fixpoint

lemma mono_imp_ex_least_fp: assumes "well_complete $A (\sqsubseteq)$ " and "monotone_on $A (\sqsubseteq) (\sqsubseteq) f$ " shows " $\exists p$. extreme $\{q \in A. f q = q\} (\sqsupseteq) p$ "

Proof (31 lines): By induction on derivable x, x is below any fixpoint q.

Step 4: from antisymmetry to attractivity

Assumptions:

- ⊑ is attractive
- *f* is monotone
- \sqsubseteq is well-complete

Existence of the least quasi fixpoint, with attractivity

lemma attract_mono_imp_least_qfp: assumes "attractive $A (\sqsubseteq)$ " and "well_complete $A (\sqsubseteq)$ " and "monotone_on $A (\sqsubseteq) (\sqsubseteq) f$ " shows " $\exists c$. extreme { $p \in A$. $f \ p \sim p \lor f \ p = p$ } (\supseteq) $c \land f \ c \sim c$ "

Proof (83 lines): Apply the previous step on a quotient of A

- define ecl ("[_]~") where "[x]~ ≡ {y ∈ A. x ~ y} ∪ {x}" for x define Q where "Q ≡ {[x]~ |. x ∈ A}" definition "X ⊑^s Y ≡ ∀x ∈ X. ∀y ∈ Y. x ⊑ y" (Q, ⊑^s) is antisymmetric and well-complete
- define *F* where "*F* $X \equiv \{y \in A. \exists x \in X. y \sim f x\} \cup f `X$ " for *X F* : *Q* \longrightarrow *Q* is well defined and monotone
- *F* then has a least fixpoint
- Every fixpoint of F is the class of a (quasi)-fixpoint

Step 5: completeness

Assumptions:

- \sqsubseteq is attractive
- *f* is monotone
- \sqsubseteq is *C*-complete with:
 - C containing well-related sets
 - C closed under ordered unions

General completeness

theorem attract_mono_imp_fp_qfp_complete: assumes "attractive $A (\sqsubseteq)$ " and "C-complete $A (\sqsubseteq)$ " and " $\forall X \subseteq A$. well_related_set $X (\sqsubseteq) \longrightarrow X \in \mathcal{C}$ " and extend: " $\forall X \in \mathcal{C}$. $\forall Y \in \mathcal{C}$. $X \sqsubset^s Y \longrightarrow X \cup Y \in \mathcal{C}$ " and "monotone_on $A (\sqsubseteq) (\sqsubseteq) f$ " and " $P \subseteq \{x \in A, f | x = x\}$ " **shows** "C-complete ($\{q \in A, f \mid q \sim q\} \cup P$) (\sqsubseteq)"

Proof (75 lines):

The least fixpoint of f on Bobtained by applying the previous step on B

$$B = \{b \in A : \forall x \in X : x \sqsubseteq b\}$$

$$s$$

$$X \subseteq \{q \sim f(q)\} \cup P$$

B satisfies the assumptions of the previous step:

- B is f-closed (easy) B is well-complete:
- - Take $Y \subset B$ with $Y \in C$
 - $X \cup Y \in C$ by extend
 - $\sup_{A}(X \cup Y)$ exists
 - $\sup_{A}(X \cup Y) = \sup_{B}(Y)$

Instances: [Knaster-Tarski'55] & [Stouti-Maaden'13]

theorem (in antisymmetric) mono_imp_fp_complete: **assumes** "UNIV-complete $A (\sqsubseteq)$ " **and** " $f \land A \subseteq A$ " **and** "monotone_on $A (\sqsubseteq) (\sqsubseteq) f$ " **shows** "UNIV-complete { $p \in A$. $f \ p = p$ } (\sqsubseteq)"

[Knaster-Tarski'55] without transitivity and reflexivity [Stouti-Maaden'13] + completeness without reflexivity

theorem (in antisymmetric) mono_imp_fp_connex_complete: **assumes** "{X. connex $X (\sqsubseteq)$ }-complete $A (\sqsubseteq)$ " **and** " $f `A \subseteq A$ " **and** "monotone_on $A (\sqsubseteq) (\sqsubseteq) f$ " **shows** "{X. connex $X (\sqsubseteq)$ }-complete { $p \in A$. f p = p} (\sqsubseteq)"

[Markowsky'76] without transitivity and reflexivity

theorem (in antisymmetric) mono_imp_fp_directed_complete: **assumes** "{X. directed $X (\sqsubseteq)$ }-complete $A (\sqsubseteq)$ " **and** " $f `A \subseteq A$ " **and** "monotone_on $A (\sqsubseteq) (\sqsubseteq) f$ " **shows** "{X. directed $X (\sqsubseteq)$ }-complete { $p \in A$. f p = p} (\sqsubseteq)"

[Pataraia'97] without transitivity and reflexivity

theorem (in antisymmetric) mono_imp_fp_well_complete: **assumes** "well_complete $A (\sqsubseteq)$ " and " $f \land A \subseteq A$ " and "monotone_on $A (\sqsubseteq) (\sqsubseteq) f$ " **shows** "well_complete { $p \in A$. $f \ p = p$ } (\sqsubseteq)"

[Bhatta-George'11] without reflexivity and ordinals

• Continue developing this archive (towards domain theory?)

• Use this archive (CPS, TRS?, others?)

• Use our "experience" in formalising mathematics in Isabelle to develop other theories (topology, metric spaces, ...)