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Introduction

The objective of directed algebraic topology is to compare spaces with a notion of order up to continuous
deformations that preserve this order. This problem originally comes from geometric semantics of truly
concurrent systems : PV-programs [Dijkstra 68] ; scan/update [Afek et al. 90] ; higher dimensional automata
[Pratt 91] and has applications in various fields like rewriting [Malbos 03] and the theory of relativity [Dod-
son, Poston 97].

Its purpose is to provide tools for the study of those directed spaces mimicking those that exist in algebraic
topology, which studies topological spaces up to continuous deformation (homotopy). One of these tools is
homology:

• sound invariant of homotopy : if two spaces are equal up-to continuous deformations then they have the
same homology.

• partially complete : if two simple spaces have the same homology then they are homotopically equivalent.

• computable : if a space is finitely presented, then we can compute its homology.

•modular : homology can be expressed from homology of simpler spaces.

Figure 1: (a) (di)homotopic (b) non-(di)homotopic

In directed algebraic topology, we consider
spaces equipped with a collection of directed
paths, i.e., increasing continuous functions from
[0, 1] to the space. We say that two dipaths
are dihomotopic if you can continuously de-
form one into the other while staying a di-
path.

Figure 2: Fahrenberg’s matchbox - blue and green dipaths are homotopic
but not dihomotopic

One important thing is that homo-
topy and dihomotopy may be dif-
ferent. This is a real problem
when we design a directed homol-
ogy : such a homology must de-
tect a default of dihomotopy even
if there is no default of homotopy.
In particular, Fahrenberg’s match-
box must have a directed homol-
ogy different from the one of a
point.

Problem : this is not the case of the candidates of directed homology in the literature.
Our main contribution : a definition of a computable directed homology, which is fine-grained enough.

Natural homology

For the geometric realization of a cubical set (glueing of cubes), a first natural definition of a directed homol-
ogy could be the classical homology of the space of traces (i.e., dipaths modulo increasing reparametrizations
[2]) from the initial state to the final state. The idea is that n-directed loops are (n − 1)-loops of a space of
traces. However, that is not sufficient to classify programs.
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Figure 3: geometric semantics of scan/update programs
(S|U) • (U.S|U.S) and S.S|U.U

Let us consider the spaces on the left (coming
from the geometric semantics of scan/update).
Their trace spaces from their bottom-left point
to their top-right point are homotopically equiv-
alent to a 6 point space (i.e., there are 6 equiv-
alence classes of total executions). Conse-
quently, this first definition of directed homol-
ogy does not distinguish these programs that
have very different behaviors. Our idea is
to replace this homology of a trace space
by the collection of homologies of all trace
spaces between two accessible points and
the way they vary when we extend the
traces.
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It will be enough to distinguish those two spaces. Indeed, in
the left one, the trace space between α and β is homotopically
equivalent to a 4 point space, but there is no pair of points in
the right one between which the trace space is of this homo-
topy type. Thus, in the first homology system of the left pro-
gram, there will be a group isomorphic to R4 but not in the
one of the right space. Also, the natural homology of the
matchbox is not trivial because, since there are non-dihomotopic
paths, there is a trace space with two path-connected compo-
nents.

Concretely, the nth natural homology system of a directed space will be the functor defined as follow [6]:

trace of p 7−→ classical homology of the space of traces from a to b
with p dipath from a to b

extension (α, β) 7−→ morphism induced in homology by concatenation
α from a′ to a, β from b to b′ with α on the left and β on the right
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Figure 4: example of a first natural homology

Bisimulation of functors

The natural homology of a directed space is incredibly fine-grained: it not only records local homology
groups of all the trace spaces but also for which traces they occur. If we wish to compare the natural homol-
ogy of two directed spaces, the latter should be unimportant. It is the patterns of change when we extend
traces that count, not the value at each trace. We have introduced a notion of bisimulation of functors that
smoothes this out [1]. This comes from the theory of open maps [5].

In our case, an open map between small Vect(R)-valued functors F : X −→ Vect(R) and
G : Y −→ Vect(R) is a pair of:
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Figure 5: example of an open map between functors

• a fibration Φ : X −→ Y ,
i.e., a functor such that:

– Φ is surjective on objects
– for every object x of X ,

and every morphism

f : Φ(x) −→ y

of Y , there exists a mor-
phism

g : x −→ x′

of X such that Φ(g) = f

• a natural isomorphism:
σ : F =⇒ G ◦ Φ

We say that two functors F and G are bisimilar if there exists a span of open maps between them.

Discrete natural homology

. . . . .

Figure 6: trace, sequence of carriers, combinatorial
trace

When X is the geometric realization of a non-looping
precubical set, we can define discrete natural systems
that intuitively will have the same information as the nat-
ural homology systems of X and that will be finite when
the precubical set is. This will be done by considering
a sub-category of the category of traces, restricted to
some combinatorial traces, similar to [3]. This produces what is called discrete natural homology systems.
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Figure 7: example of a first discrete natural homology

The function that maps each trace to the combinatorial trace constructed like in Figure 6, can always be ex-
tended to a fibration, but in general we cannot construct an open map between the natural homology systems
and the discrete ones. But it can be done in simple cases:

Theorem [1]: If X is the geometric realization of a simple precubical set, then
- there exists an open map from

−→
Hn(X) to

−→
h n(X) (in particular, they are bisimilar).

- the bisimulation type of discrete natural homology systems is invariant under subdivision
- if the precubical set is finite, the bisimulation type of

−→
Hn(X) is computable when homology is

taken in R or Q.

Conclusion

Definition of a directed homology which :
• is computable on finite simple precubical

sets,
• classifies the matchbox correctly,
• is invariant under subdivision and directed

deformation retracts,

• has long exact sequences (homological cate-
gory [4]),

• verifies a Hurewicz-like theorem.
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