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Applications of directed algebraic topology
Some work done:

models for true concurrency and distributed tasks [Pratt, van Glabbeek,
Winskel, Nielsen],
state space reduction techniques [Haucourt, Goubault, Fajstrup, Raussen,
Mimram],
verification (deadlocks/unreachable states detection, correctness via
serialisability, decomposition of processes) [Haucourt, Goubault, Fajstrup,
Raussen, Mimram, Ninin]

Work in progress:
fault-tolerance (possibility and impossibility results) [Herlihy, Rajsbaum,
Kozlov, Goubault, Mimram, Tasson],
higher-order rewriting [Malbos],
Conley-Morse-Forman theory [Mrozek],
pursuit-evasion games and max flow-min cut duality [Krishnan, Grhist],
relativity [Dodson, Postdon].
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The geometry of true concurrency
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Independent actions: interleaving vs true concurrency

q∅ qA

qB qA,B

X := 0

Y := 1 Y := 1

X := 0

Interleaving behaviors: A then B or B then A
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Independent actions: interleaving vs true concurrency

q∅ qA

qB qA,B

X := 0

Y := 1 Y := 1

X := 0

Continuous behaviors: any scheduling of A and B
Refinement [van Glabbeek, Goltz]: in reality X := 0 and Y := 1 are not atomic
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Truly concurrent systems
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HDA [Pratt] = transition system with higher dimensional data that accounts for
true concurrency

Jérémy Dubut (LSV, ENS Paris-Saclay) Directed homotopy and homology theories 11th September, 2017 6 / 50



The geometry of true concurrency

geometry of true concurrency

||

form + direction
↑ ↑

topological space partial order

execution

||

continuous + directed

path
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True concurrency, geometrically

truly concurrent system directed space

states points

executions directed paths

modulo scheduling of modulo
independent actions directed homotopy
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The objective of this thesis

Understand the geometry of those directed spaces...

...with the study of truly concurrent systems through the prism of geometry
as a goal.
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Directed algebraic topology
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D-spaces and dipaths [Grandis]

A d-space is a topological X with a subset
−→
P (X ) of paths, called dipaths, which

contains constant paths, and which is closed under concatenation and non
decreasing reparametrizations.

Ex: a partially ordered space with monotonic paths

A dimap is a continuous function f : X −→ Y such that for every γ ∈
−→
P (X ),

f ◦ γ ∈
−→
P (Y ). We note dTop the category of d-spaces and dimaps.
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Cubical complexes

Euclidian cubical complex: any subspace of Rn which is a finite union of cubes
of the form

[a1, a1 + α1]× . . .× [an, an + αn]

with ai ∈ Z and αi ∈ {0, 1}.
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True concurrency, geometrically

truly concurrent system directed space

states points

executions directed paths

modulo scheduling of modulo
independent actions directed homotopy
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True concurrency, geometrically

truly concurrent system d-space

states points

executions dipaths

modulo scheduling of modulo
independent actions directed homotopy ??
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Dihomotopy of dipaths

A dihomotopy from γ to τ , dipaths
from a to b, is a dimap

H : [0, 1]×
−−→
[0, 1] −→ X

such that:
for every t, H(0, t) = a,
for every t, H(1, t) = b,
for every t, H(t, 0) = γ(t)

for every t, H(t, 1) = τ(t).

Two dipaths are dihomotopic if
there is a dihomotopy between them.

dihomotopic

non-dihomotopic
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Example: Fahrenberg’s matchbox
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Example: Fahrenberg’s matchbox

homotopic...
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Example: Fahrenberg’s matchbox

... but not dihomotopic
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Goal of thesis

Extend the work from algebraic topology:
homology
homotopy
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Homology theories
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Homology = counting

hole of dimension 1

not a hole of dimension 1 ... ... but a hole of dimension 2

Hn(X ) ' Rnumber of holes of dimension n

H0(X ) ' Rnumber of path-connected components
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Properties of homology

sound: invariant of homotopy

precise: do not lose too much information from homotopy [Hurewicz],
partially complete [Whitehead]

modular: the homology of a space can be expressed from the homology of
simpler spaces [Mayer-Vietoris]

computable: when the space is finitely presented
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What about a directed homology ?

Our contribution:
a homology theory for d-spaces with

the same kind of properties
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Previous proposals of directed homology

past and future homologies [Goubault 95]

ordered homology groups [Grandis 04]

directed homology via ω-categories [Fahrenberg 04]

homology graph [Kahl 13]

and some others
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The matchbox, a litmus test

ordered homology groups [Grandis 04] = classical homology + partial order

Not precise enough : do not distinguish matchbox from a point
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The main ingredients of our directed homology
[D.&G.G. ICALP’15]

1. Consider trace spaces [Raussen] (' spaces of dipaths).

2. Look at how they evolve with time (extensions).

3. Apply classical homology on those data.

4. Look at the evolution (using bisimulation techniques).
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Basic block: space of dipaths ?

−→
P (X )(a, b) = the set of γ ∈

−→
P (X ) with γ(0) = a and γ(1) = b

−→
P (X )(a, b) can be equipped with a topology: its path-connected components are
the dihomotopy class of dipaths

Problem: concatenation of dipaths is not associative

(α ? β) ? γ

||
α β γ

α ? (β ? γ)

||
α β γ
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Basic block: trace spaces [Raussen]

Concatenation is associative modulo reparametrization

Trace = dipath modulo reparametrization

We can also define the trace space
−→
T (X )(a, b) as the quotient space of

−→
P (X )(a, b) modulo reparametrization.
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Directed homology = classical homology of a trace space ?

homology of X = classical homology of T (X )(a, b)

a

b

a

b

(S || U) • (S .U || S .U) S .S || U.U

T (A)(a, b) ' 6 point space ' T (B)(a, b)

homology of A ' R6 ' homology of B
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Directed homology = evolution of classical homology of
trace spaces with time
How to distinguish those two d-spaces ?

•

•

a

b

a

b

•

•

make a, b vary

−→
T (A)(a, b) ' 4 point space

directed homology of A ' R4

for every a, b,

−→
T (B)(a, b) is either a

1, 2, 3 or 6 point space
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Natural homology

directed homology = collection of modules of homology of the trace spaces
indexed by pairs of points, and of linear maps indexed by extensions

EX = category whose:
objects are pairs (a, b) of
points such that there is
a dipath from a to b

morphisms are extensions
•a

•a’

•b
•b’

Natural homology [D.&G.G. ICALP’15]:

diagram
−→
H n(X ) : EX −→Mod(R)

(a, b) 7−→ Hn−1(
−→
T (X )(a, b)) (Hn−1 = classical singular homology)
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Example : first natural homology of a + b

0 1

a

b

x y

x′ y ′

0 x y

(0, x) (y , 1)(x, y)

(0, y) (x, 1)

(0, 1)

1x′ y ′

(0, x′) (y ′, 1)(x′, y ′)

(0, y ′) (x′, 1)

(0, 1)

−→
H 1(a + b)

R R R

R RR

R R

R[a, b] ' R2

RR R

R RR

R R

R[a, b] ' R2

1 7→ a 1 7→ b

Ea+b
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Natural homology on the litmus test

a

b

Natural homology detects failure of dihomotopy in the matchbox.

2 dipaths non dihomotopic
⇒
−→
T (X )(a, b) ' 2 point space

⇒ H0(
−→
T (X )(a, b)) ' R2

⇒
−→
H 1(X ) not trivial
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Properties of natural homology
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Properties of homology

sound: invariant of homotopy

precise: do not lose too much information from homotopy [Hurewicz],
partially complete [Whitehead]

modular: the homology of a space can be expressed from the homology of
simpler spaces [Mayer-Vietoris]

computable: when the space is finitely presented
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Two ways of computing homology

Direct computation:
I from a finite presentation of the space, compute a finite presentation of the

homology (good for automatization)

Modular computation:
I from a description of a space using simpler spaces, compute the homology of

the space from the homology of the spaces involved in the description (ex:
spheres)

I uses the theory of exact sequences
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Non-Abelian exactness theory (modularity)
Modularity rely on the possibility to produce long exact sequence:

· · · Hn(V ) Hn(W ) Hn−1(U) Hn−1(V ) · · ·
fn gn hn−1

with Im fn = Ker gn, ...

Sequences of order two:
in general Im fn ⊆ Ker gn.

Still enough to do some modularity
and have the homotopy axiom
from [Eilenberg, Steenrod].
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How to compare natural homologies ?

Isomorphism of diagrams is the wrong notion to compare diagrams of natural
homology (because of the category EX )

R R R

R RR

R R

R[a, b]

RR R

R RR

R R

R RR R

R R R R

R2

Key notion [D.&G.G. ICALP’15]:
Compare natural homologies up-to evolution with time.
Idea similar to bisimulations in concurrent systems.
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Bisimulation of diagrams [D.&G.G. ICALP’15]
Bisimulation between F : C −→Mod(R) and G : D −→Mod(R)
= set R of triples (c , η, d) such that :
• c is an object of C ,
• d is an object of D,
• η : F (c) −→ G (d) is an isomorphism of modules

satisfying :

• for every object c of C , there exists d and η such that (c , η, d) ∈ R

•

(c ′, η′, d ′) ∈ R

(c, η, d) ∈ R

c ′

c

Fc ′

Fc

Gd ′

Gd

d ′

d

i jFi Gj

η

η′

and symmetrically

Similar to bisimulations of event structures [Rabinovitch, Trakhtenbrot 88].
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Examples

R R R

R RR

R R

R2

RR R

R RR

R R

the first natural homology of the matchbox is not bisimilar to the one of a point
space
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Deciding bisimilarity

Theorem [D. submitted]:
It is decidable in EXPSPACE wether two finitary diagrams are bisimilar.

Proof (sketch):

in the finite dimensional case: bisimilarity = problem of matrices in reals.
→ can be encoded in the existential theory of the reals (decidable).

Corollary (soon):
It is decidable wether two finitely presented d-spaces have the same natural
homology, up-to bisimilarity.
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Finite structure of a Euclidian cubical complex

The trace spaces of a Euclidian cubical complex can be finitely presented, and
their homology can be computed [Raussen, Ziemianski]

EX can also be describe finitely using discrete traces = traces which are a glueing
of segments joining centers of cubes

except that everything works only modulo bisimilarity.
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Computability

Theorem [D.G.G-L. ICALP’15]:
When X is (finite) Euclidian cubical complex, we can compute a finitary diagram
bisimilar to

−→
H n(X ). It is then decidable wether two such complexes have the

same natural homology (up-to bisimilarity).

R R R

R RR

R R

R[a, b]

RR R

R RR

R R

R RR R

R R R R

R2
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Homotopy theories and soundness
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Soundness in classical algebraic topology

Homotopy equivalence = maps which is a homeomorphism up-to continuous
deformations

Classical invariance: homology is an invariant of homotopy equivalence, i.e., a
homotopy equivalence induces isomorphisms Hn(f ) : Hn(X ) −→ Hn(Y ) for all n.

Can we define a notion of dihomotopy equivalence, i.e., of
isomorphism of d-spaces up-to continuous deformations

that preserve the directed structure, that makes sense and
that is compatible with natural homology ?
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Dihomotopy of dimaps and dihomotopy
equivalence à la Grandis

A dihomotopy from f : X −→ Y to g : X −→ Y is a continuous function
H : X −→

−→
P (Y ) with H(_)(0) = f and H(_)(1) = g , and such that for every t,

H(_)(t) is a dimap.

Two dimaps are dihomotopic if there is a zig-zag of dihomotopies between them.

A dihomotopy equivalence à la Grandis is a dimap f : X −→ Y such that there
is g : Y −→ X with f ◦ g and g ◦ f dihomotopic to identities.
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Problem n◦1: the matchbox

The matchbox is equivalent à la Grandis to a point
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Problem n◦2: deadlocks/unreachable states
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Solution n◦1: do not follow this path !
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Solution n◦2: do not follow this path either !
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Inessential dipaths [D.&G.G. CSL’16]

The set I(X ) of inessential dipaths of X is the largest set of dipaths such that :
it is closed under concatenation and dihomotopy;

for every γ ∈ I(X ) from x to y , for every z ∈ X such that
−→
P (X )(z , x), the

map γ ?_ :
−→
P (X )(z , x) −→

−→
P (X )(z , y) δ 7→ γ ? δ is a homotopy

equivalence;
symmetrically for _ ? γ;
I(X ) has the right and left Ore condition modulo dihomotopy:

w x

z y

mod. dihomot.

g ′

f ′ ∈ I(X )

g

f ∈ I(X )

z y

x w

mod. dihomot.

g

f ∈ I(X )

g ′

f ′ ∈ I(X )

Idea similar to the construction of the category of components of a d-space
[Goubault, Haucourt]
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Inessential dihomotopy equivalence [D.&G.G. CSL’16]

A future inessential deformation retract (FIDR) of X on a sub-d-space A is a
continuous map

such that :
for every x ∈ X , H(x)(0) = x ;
for every a ∈ A, t ∈ [0, 1], H(a)(t) = a;
for every x ∈ X , H(x)(1) ∈ A;
for every t ∈ [0, 1], the map Ht : x 7→ H(x)(t) is a dmap;
+ technical conditions

Definition :
Two d-spaces are inessentially homotopically equivalent iff there is a zigzag of
FIDR and PIDR between them.
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Soundness

Theorem [D.&G.G. CSL’16]:

Natural homology is an invariant of inessential equivalence:
if two Euclidian cubical complexes are inessentially
equivalent, then their natural homologies are bisimilar.
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Conclusion

We have produced a homology theory of d-spaces:
using trace spaces and their evolution as a basic block,
using a notion of bisimulation to compare the objects in a smoother way,
and which have directed analogues of properties of the classical homology
theory:

I precise enough to detect non-cancellative default of dihomotopy (matchbox),
I is compatible with a non-Abelian theory of exactness,
I is computable in the case of Euclidian cubical complexes,
I is an invariant of a dihomotopy equivalence (inessential equivalence).
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Perspectives

Is the computation of natural homology can be related to techniques from
persistency ?

What is the precise complexity of the bisimilarity problem ?

Do we have model structures (or similar structures) for d-spaces up-to
dihomotopy equivalences ?
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