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Introduction

The objective of directed algebraic topology is to compare spaces with a notion of order up to continuous
deformation that preserve this order. This problem originally comes from geometric semantics of truly
concurrent systems : PV-programs [Dijkstra 68] ; scan/update [Afek et al. 90] ; higher dimensional automata
[Pratt 91] and has applications in various fields like rewriting [Malbos 03] and the theory of relativity [Dod-
son, Poston 97].

Its purpose 1s to provide tools for the study of those directed spaces mimicking what exists in algebraic topol-
ogy, a well developed field in mathematics, which studies topological spaces up to continuous deformation
(homotopy). One of these tools 1s homology. In algebraic topology, homology is :

¢ a sound invariant of homotopy : if two spaces are equal up to continuous deformations (homotopically
equivalent) then they have the same homology

e partially complete : if two simply-connected CW-complexes have the same homology then they are homo-
topically equivalent

e computable : if a space 1s finitely presented (finite simplicial set, precubical set, ...), then we can compute
its homology (via matrixes algebra)

e modular : homology can be expressed from homology of simpler spaces (for example, Mayer-Vietoris
theorem)

In directed algebraic topology, we consider spaces equipped with a collection of directed paths i.e. increasing
continuous functions from |0, 1] to the space. We say that two dipaths are dihomotopic if you can continuously
deform one into the other while staying a dipath.

Figure 1: (di)homotopic non-(di)homotopic

One important thing is that homotopy and dihomotopy may be different :

Figure 2: Fahrenberg’s matchbox - blue and green dipaths are homotopic but not dihomotopic

This 1s a real problem when we design a directed homology : such a homology must detect a default of di-
homotopy even if there 1s no default of homotopy. In particular, Fahrenberg’s matchbox must have a directed
homology different from the one of a point. Problem : this is not the case of the candidates of directed
homology in the literature.

Our main contribution : a definition of a directed homology fine enough to detect default of dihomotopy.

Natural homology

For the geometric realization of a cubical set (glueing of cubes), a first natural definition of a directed homol-
ogy could be the classical homology of the space of traces (i.e. dipaths modulo increasing reparametrization
Raussen 09]) between the initial state to the end state. The idea is that n-directed loops are (n — 1)-loops of a
space of traces. However, that is not sufficient to classify programs !

Let us consider the spaces on the left (coming
from the geometric semantics of scan/update).
Their trace spaces from their bottom-left point
to their top-right point are homotopically equiv-
alent to a 6 point space (1.e. in those two pro-
grams, they are 6 equivalence classes of total ex-
ecutions). And so, this first definition of directed
? WS—’ homology does not distinguish these programs
= that have very different behaviors. Our 1dea is
to replace this homology of a trace space by a
natural system [Baues, Wirsching 85] of ho-
mologies of all trace spaces between two ac-
cessible points and the way they vary when
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Figure 3: geometric semantics of scan/update programs
(S|U) e (U.S|U.S)and S.S|U.U

we extend the traces.

It will be sufficient to distinguish those two spaces.  Indeed,
in the left one, the trace space between a and (3 1s homo-

topically equivalent to a 4 point space, but there 1s no pair
of points i1n the right one between which the trace space 1s
of this homotopy type. Thus 1n the first homology system
of the left program, there will be a group isomorphic to Z4

but not in the one of the right space. Also, the first ho-
mology system of the matchbox 1s not trivial because the trace
space between s and ¢ 1s homotopically equivalent to a 2 point
space.

More concretely, the nth homology system of a directed space will be the functor defined this way [Raussen
07] :
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Figure 4: example of a first natural homology

Bisimulation of functors

The natural homology of a directed space 1s incredibly fine-grained: it not only records local homology
groups of all the trace spaces but also for which trace they occur. If we wish to compare the natural homology
of two directed spaces, the latter should be unimportant. It is the patterns of change when we extend traces
that count, not the value at each trace. We have introduced a notion of bisimulation of natural systems that
smoothes this out [Dubut et al. 15].

This comes from the theory of open maps [Joyal et al. 96]. In our case, an open map between small Ab-valued
functors /' : X — Aband GG : Y — Ab is a pair of:

e a fibration ® : X — Y 1.e. a functor such that:

— O 1s surjective on objects

— for every object x of X, every morphism f : ®(x) — y of Y, there exists a morphism ¢ : # — 2’ of X
such that ®(g) = f

e a natural isomorphismo : F' — G o ®
We say that two natural systems /' and G are bisimilar if there exists a span of open maps between them.
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Figure 5: example of bisimilar functors

Discrete natural homology

When X is the geometric realization of a non-looping
precubical set, we can define discrete natural systems
that intuitively will have the same information than the
natural homology systems of X and that will be finite
when the precubical set 1s. This will be done by consid-
ering a sub-category of the category of traces, restricted
to some combinatorial traces. With each point of the geometric realization, we associate a cube of the precu-
bical set as the biggest one to which this point belongs. This is the carrier of the point [Fajstrup 05]. Then
with each trace, we can associate the sequence of cubes crossed by this trace and from this sequence of cubes
we can construct a trace by joining the center of consecutive cubes. We can then restrict our natural homology
systems to those traces and call these new systems discrete natural homology systems.

Figure 6: trace, sequence of carriers, combinatorial
trace
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Figure 7: example of a first discrete natural homology

The function that maps each trace to the combinatorial trace constructed above can always be extended to
a fibration, but 1n general we cannot construct an open map between the natural homology systems and the
discrete one. But it can be done in simple cases:

Theorem [Dubut et al. 15]: If X is the geongtric realization of a simple precubical set, then
- there exists an open map from ﬁn(X ) to h ,(X) (in particular, they are bisimilar).
- the bisimulation type of discrete natural homology systems is invariant under subdivision

- if the precubical set is finite, the bisimulation type of H , (X ) is computable when homology is taken in
R or Q.

Conclusion

Definition of a directed homology which : subdivision

e is computable on finite simple precubical sets ¢ has long exact sequences (natural homology

o classifies the matchbox correctly lives in a homological category [Grandis 91])

e is Invariant under dihomeomorphism and e verifies a Hurewicz-like theorem



