Weighted and Branching Bisimilarities from Generalized Open Maps FoSSaCS'23, Sorbonne University, Paris

Jérémy Dubut¹ and Thorsten Wißmann^{2,3}

National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
 Radboud University, Nijmegen, the Netherlands
 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

April 25th

AIST CPSEC

Categorical Formalisation of Transition Systems

Transition Systems

Labelled transition system :

- A **TS** $T = (Q, i, \Delta)$ on the alphabet Σ is the following data:
 - a set Q (of states);
 - an initial state $i \in Q$;
 - a set of transitions $\Delta \subseteq Q \times \Sigma \times Q$.

•
$$\Sigma = \{a, b, c\},\$$

•
$$Q = \{0, 1, 2, 3\},\$$

•
$$\Delta = \{(0, a, 0), (0, b, 1), (0, a, 2), (1, c, 2), (2, b, 0), (2, a, 3)\}.$$

3 / 31

Bisimulations of Transition Systems

Strong bisimulations [Park81] :

A **bisimulation** between $T_1 = (Q_1, i_1, \Delta_1)$ and $T_2 = (Q_2, i_2, \Delta_2)$ is a relation $R \subseteq Q_1 \times Q_2$ such that:

- (i) $(i_1, i_2) \in R;$
- (ii) if $(q_1, q_2) \in R$ and $(q_1, a, q'_1) \in \Delta_1$ then there is $q'_2 \in Q_2$ such that $(q_2, a, q'_2) \in \Delta_2$ and $(q'_1, q'_2) \in R$;
- (iii) if $(q_1, q_2) \in R$ and $(q_2, a, q'_2) \in \Delta_2$ then there is $q'_1 \in Q_1$ such that $(q_1, a, q'_1) \in \Delta_1$ and $(q'_1, q'_2) \in R$.

Several Characterisations of Bisimilarity

Bisimilarity:

Given two TS T and T', the following are equivalent:

- [Park81] There is a bisimulation between T and T'.
- **[Stirling96]** Defender has a strategy to never lose in a 2-player game on *T* and *T'*.
- [Hennessy80] T and T' satisfy the same formulas of the Hennessy-Milner logic.

In this case, we say that T and T' are **strongly bisimilar**.

Morphisms of Transition Systems

Morphism of TS:

A morphism of TS $f: T_1 = (Q_1, i_1, \Delta_1) \longrightarrow T_2 = (Q_2, i_2, \Delta_2)$ is a function

$$f: Q_1 \longrightarrow Q_2$$

such that:

- preserving the initial state: $f(i_1) = i_2$,
- preserving the transitions: for every $(p, a, q) \in \Delta_1$, $(f(p), a, f(q)) \in \Delta_2$.

 $TS(\Sigma) = category of transition systems and morphisms$

Morphisms are functional simulations:

Morphisms are precisely functions f between states whose graph $\{(q, f(q)) \mid q \in Q_1\}$ is a simulation.

Categorical Characterisations

Bisimilarity, using morphisms:

Two TS T and T' are bisimilar iff there is a span of functional bisimulations between them.

Transition systems, as pointed coalgebras

Set of transitions, as functions:

There is a bijection between sets of transitions $\Delta \subseteq Q \times \Sigma \times Q$ and functions of type:

$$\delta: Q \longrightarrow \mathcal{P}(\Sigma \times Q)$$

where $\mathcal{P}(X)$ is the powerset $\{U \mid U \subseteq X\}$.

Initial states, as functions:

There is a bijection between initial states $i \in Q$ and functions of type:

$$\iota:*\longrightarrow Q$$

where * is a singleton.

Pointed coalgebras

Pointed coalgebras:

Given an endofunctor $G : \mathcal{C} \longrightarrow \mathcal{C}$ and an object $I \in \mathcal{C}$, a **pointed coalgebra** is the following data:

- an object $Q \in \mathcal{C}$,
- a morphism $\iota: I \longrightarrow Q$ of \mathcal{C} ,
- a morphism $\sigma: Q \longrightarrow G(Q)$ of \mathcal{C} .

G is often decomposed as $T \circ F$, where:

- T: "branching type", e.g., non-deterministic, probabilistic, weighted. For TS: T = P.
- F: "transition type". For TS: $F = \Sigma \times _$.
- *I* is often the final object For TS: I = *, the final object.

Morphisms of TS, using Pointed Coalgebras

Morphisms of TS are lax morphisms of pointed coalgebras A morphism of TS, seen as pointed coalgebras $T = (Q_1, \iota_1, \delta_1)$ and $T' = (Q_2, \iota_2, \delta_2)$ is the same as a function

 $f: Q_1 \longrightarrow Q_2$

satisfying

Lax Morphisms of Pointed Coalgebras

Lax Morphisms:

Assume there is an order \leq on every Hom-set of the form C(X, G(Y)). A lax morphism from (Q_1, ι_1, δ_1) to (Q_2, ι_2, δ_2) is a morphism

$$f: Q_1 \longrightarrow Q_2$$

of $\mathcal C$ satisfying

 $Coal_{lax}(G, I) = category of pointed coalgebras and lax morphisms.$

What about functional bisimulations?

Functional bisimulations are homomorphisms of pointed coalgebras

For two TS, seen as pointed coalgebras $T = (Q_1, \iota_1, \delta_1)$ and $T' = (Q_2, \iota_2, \delta_2)$, and for a function of the form $f : Q_1 \longrightarrow Q_2$, the following are equivalent:

- The graph $\{(q, f(q)) \mid q \in Q_1\}$ of f is a bisimulation.
- *f* is a homomorphism of pointed coalgebras, that is, the following diagram commutes:

$$I \xrightarrow{\iota_{1}} Q_{1} \xrightarrow{\sigma_{1}} \mathcal{P}(\Sigma \times Q_{1})$$

$$\downarrow^{\circlearrowright} f \qquad \circlearrowright \qquad \downarrow^{\mathcal{P}(\Sigma \times f)}$$

$$Q_{2} \xrightarrow{\sigma_{2}} \mathcal{P}(\Sigma \times Q_{2})$$

Bisimilarity, using homomorphisms of pointed coalgebras

For two TS T and T', the following are equivalent:

- T and T' are bisimilar.
- There is a span of homomorphisms of pointed coalgebras between T and T'.

Homomorphisms of Pointed Coalgebras

Morphisms:

A homomorphism from (Q_1, ι_1, δ_1) to (Q_2, ι_2, δ_2) is a morphism

$$f: Q_1 \longrightarrow Q_2$$

of $\ensuremath{\mathcal{C}}$ satisfying

Coal(G, I) = category of pointed coalgebras and homomorphisms.

Summary

	coalgebra	
data type	$ \begin{array}{c} {\cal G}: {\cal C} \to {\cal C}, \ I \in {\cal C} \\ {} \preceq {\rm on} \ {\cal C}(X, {\cal G}(Y)) \end{array} \end{array} $	
systems	pointed coalgebras	
functional simulations	lax morphisms	
functional bisimulations	homomorphisms	
bisimilarity	existence of a span of functional bisimulations	

Runs in a Transition System

Run

A run in a transition system (Q, i, Δ) is sequence written as:

$$q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} q_n$$

with:

•
$$q_i \in Q$$
 and $a_i \in \Sigma$

•
$$q_0 = 1$$

• for every
$$j,~(q_j,a_{j+1},q_{j+1})\in\Delta$$

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{c} q_2 \xrightarrow{a} q_3$$

Runs, Categorically

Finite Linear Systems:

A finite linear system is a TS of the form $\langle a_1, \ldots, a_n \rangle = ([n], 0, \Delta)$ where:

- [*n*] is the set {0,...,*n*};
- Δ is of the form $\{(i, a_{i+1}, i+1) \mid i \in [n-1]\}$ for some $a_1, ..., a_n$ in Σ .

$$\rightarrow 0 \xrightarrow{a_1} 1 \xrightarrow{a_2} 2 \cdots n-1 \xrightarrow{a_n} n$$

Runs are morphisms

There is a bijection between runs of T and morphisms of TS between a finite linear system to T.

Functional Bisimulations, from Lifting Properties of Paths

Functional bisimulations are open maps:

For a morphism f of TS from T to T', the following are equivalent:

- The reachable graph of f, that is, $\{(q, f(q)) \mid q \text{ reachable}\}$ is a bisimulation.
- *f* has the right lifting property w.r.t. path extensions, that for every commutative square (in plain):

there is a lifting (in dot), making the two triangles commute.

Bisimilarity, using open maps

For two TS T and T', the following are equivalent:

- T and T' are bisimilar.
- There is a span of open maps between T and T'.

Open maps

Open map situation:

An **open map situation** is a category \mathbb{M} (of **systems**) together with a subcategory $J : \mathbb{P} \hookrightarrow \mathbb{M}$ (of **paths**).

- $\mathbb{M} = category \text{ of systems } (Ex : \textbf{TS}(\Sigma)),$
- $\mathbb{P} = \mathsf{sub-category}$ of finite linear systems.

Open maps:

A morphism $f : T \longrightarrow T'$ of \mathbb{M} is said to be **open** if for every commutative square (in plain):

where $p: P \longrightarrow Q$ is a morphism of \mathbb{P} , there is a lifting (in dot) making the two triangles commute.

Summary

[Wißman, D., Katsumata, Hasuo – FoSSaCS'19]

Non-deterministic branching

en maps	
$\mathbb{P} \hookrightarrow \mathbb{M}$	
ects of $\mathbb M$	
hisms of M	
en maps	
existence of a span of functional bisimulations	
hism en r i of ions	

[Lasota'02]

Small category of paths

Coalgebra vs open maps

Coalgebras

Pros:

- it is very easy to generalise to other type of branchings (weighted, probabilistic, ...), and other types of state spaces (Stone spaces for Kripke frames, measurable spaces for probabilistic systems, ...)
- there is a rich theory behind.

Con:

 difficult to model any non-local or history-preserving notion of bisimulations (weak bisimulations, timed systems, true concurrency)

Open Maps

Pro:

• it is very easy to model history-preserving bisimulations.

Cons:

- Limited to non-deterministic branching?
- marginally known and used :-(

Contributions

Negative result

There is no open map situation capturing generative probabilistic systems.

Positive results

- There is a *generalised* open map situation capturing generative probabilistic systems.
- There is a generalised open map situation capturing branching bisimulations and weak bisimulations.

Open Maps and Probabilistic Systems

Weighted and Probabilistic Systems as Coalgebras

Given a monoid (K, +, e), define the endofunctor $\mathcal{W}_{\mathcal{K}}$:

sets:
$$X \mapsto \mathcal{W}_{\mathcal{K}}(X) = \{\mu \colon X \to \mathcal{K} \mid \mu^{-1}(\mathcal{K} \setminus \{e\}) \text{ is finite} \}$$

maps: $f \colon X \to Y \mapsto \mathcal{W}_{\mathcal{K}}(f)(\mu) = (y \in Y \mapsto \sum \{\mu(x) \mid x \in X, f(x) = y\})$

If (K, \sqsubseteq) is a partial order, $\mathbf{Set}(X, \mathcal{W}_{K}(Y))$ is partially ordered in a pointwise manner.

If $(K, +, e, \sqsubseteq)$ is an ordered monoid, then **Coal**_{lax} $(\mathcal{W}_{K}, *)$ is a category.

The distribution functor \mathcal{D} (resp. sub-distribution functor $\mathcal{D}_{\leq 1}$) is the sub-functor of $\mathcal{W}_{([0,+\infty),+,0,\leq)}$ restricted to μ s with $\sum \{\mu(x) \mid x \in X\} = 1$ (resp. ≤ 1).

Open Maps for Reactive Systems

[Cheng-Nielsen'95]

There is an open map situation that captures Larsen-Skou bisimilarity.

Proof:

- they consider reactive systems, i.e., coalgebras for $(\mathcal{D}(_)+1)^A$,
- they define the open map situation in coalgebras for $(\mathcal{D}_{\leq 1}^{\epsilon}(_) + 1)^A$ paths are finite linear systems whose probabilities are infinitesimals
- two proper reactive systems are Larsen-Skou bisimilar iff they is a span of open maps in non-proper systems between them.

Problems:

- the open map situation is defined outside of the category of systems,
- Larsen-Skou bisimilarity here means the underlying TS (forgetting the probabilities) are strong bisimilar.

Impossibility for Generative Systems

Theorem:

There is no open maps situation on $\mathbf{Coal}_{lax}(\mathcal{D}_{\leq 1}(x \land A), *)$ such that open bisimilarity coincides with coalgebraic bisimilarity.

Impossibility for Generative Systems

Theorem:

There is no open maps situation on $\mathbf{Coal}_{lax}(\mathcal{D}_{\leq 1}(x \land A), *)$ such that open bisimilarity coincides with coalgebraic bisimilarity.

Solution

Generalised Open Maps

Generalised open maps situation:

A generalised open maps situation on ${\mathbb M}$ is the following data:

- a set V together with a function $J \colon V \to \mathsf{ob}(\mathbb{M})$,
- $\bullet\,$ two small categories $\mathbb E$ and $\mathbb S$ whose sets of objects are V,
- two functors $J_{\mathbb{E}} \colon \mathbb{E} \to \mathbb{M}$ and $J_{\mathbb{S}} \colon \mathbb{S} \to \mathbb{M}$ coinciding with J on objects.

Ex: usual open maps are for $\mathbb{E} = \mathbb{P}$ and $\mathbb{S} = |\mathbb{P}|$.

Generalised open maps

We say that a morphism $f: X \longrightarrow Y$ is (\mathbb{E}, \mathbb{S}) -open if:

Generalised Open Maps Situation for Weighted Systems

Two types of "paths":

Generalised Open \simeq Coalgebraic, for Weighted Systems

Theorem

If K is a positive strict rearrangement monoid, then for a morphism of $Coal_{lax}(\mathcal{W}_{K}(_ \times A), *)$ whose domain is reachable, the following assertions are equivalent:

- it is $(\mathbb{E}_{\mathcal{K}}, \mathbb{S}_{\mathcal{K}})$ -open,
- it is a coalgebra homomorphism.

Ex: $\mathcal{K} = \mathbb{R}_+, \mathbb{Q}_+, \mathbb{N}$, or any distributive lattice

Theorem

If K is a positive strict rearrangement monoid, then two pointed coalgebras of $\mathbf{Coal}_{lax}(\mathcal{W}_{K}(\underline{\ }\times A),*)$ are $(\mathbb{E}_{K},\mathbb{S}_{K})$ -open bisimilar iff they are coalgebraically bisimilar.

Generalised Open \simeq Coalgebraic, for Generative Probabilistic Systems

We can define a generalised open map situation (\mathbb{E}_{gps} , \mathbb{S}_{gps}) on $\mathbf{Coal}_{\mathsf{lax}}(\mathcal{D}_{\leq 1}(\underline{\ }\times A), *)$ by restricting ($\mathbb{E}_{\mathbb{R}_{+}}, \mathbb{S}_{\mathbb{R}_{+}}$).

Theorem

For a morphism of $Coal_{lax}(\mathcal{D}_{\leq 1}(\underline{\ }\times A), *)$ whose domain is reachable, the following assertions are equivalent:

- it is $(\mathbb{E}_{gps}, \mathbb{S}_{gps})$ -open,
- it is a coalgebra homomorphism.

Theorem

Two pointed coalgebras of **Coal**_{lax}($\mathcal{D}_{\leq 1}(_ \times A), *$) are ($\mathbb{E}_{gps}, \mathbb{S}_{gps}$)-open bisimilar iff they are coalgebraically bisimilar.

Conclusion

- Presented here:
 - ► No open maps situations for generative probabilistic systems.
 - A generalisation of open maps to allow merging in addition to extensions.
 - A generalised open map situation for weighted and generative probabilistic systems.
- In the paper, but not presented:
 - Two notions of bisimulation relations (strong path and path) associated with generalised open maps.
 - A generalised open map situation such that:
 - ★ open bisim. $\simeq \exists$ strong path bisim. $\simeq \exists$ branching bisim.
 - ★ \exists path bisim. $\simeq \exists$ weak bisim.
- Future work:
 - New Instances: Quantitative Petri Nets? Higher Dimensional Automata?
 - Which branching types are we capturing?