Weighted and Branching Bisimilarities from Generalized Open Maps

FoSSaCS'23, Sorbonne University, Paris

Jérémy Dubut ${ }^{1}$ and Thorsten Wißmann ${ }^{2,3}$

1. National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
2. Radboud University, Nijmegen, the Netherlands
3. Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

April 25th

Categorical Formalisation of Transition Systems

Transition Systems

Labelled transition system

A TS $T=(Q, i, \Delta)$ on the alphabet Σ is the following data:

- a set Q (of states);
- an initial state $i \in Q$;
- a set of transitions $\Delta \subseteq Q \times \Sigma \times Q$.
- $\Sigma=\{a, b, c\}$,
- $Q=\{0,1,2,3\}$,
- $i=0$,
- $\Delta=\{(0, a, 0),(0, b, 1),(0, a, 2)$, $(1, c, 2),(2, b, 0),(2, a, 3)\}$.

Bisimulations of Transition Systems

Strong bisimulations [Park81]

A bisimulation between $T_{1}=\left(Q_{1}, i_{1}, \Delta_{1}\right)$ and $T_{2}=\left(Q_{2}, i_{2}, \Delta_{2}\right)$ is a relation $R \subseteq Q_{1} \times Q_{2}$ such that:
(i) $\left(i_{1}, i_{2}\right) \in R$;
(ii) if $\left(q_{1}, q_{2}\right) \in R$ and $\left(q_{1}, a, q_{1}^{\prime}\right) \in \Delta_{1}$ then there is $q_{2}^{\prime} \in Q_{2}$ such that $\left(q_{2}, a, q_{2}^{\prime}\right) \in \Delta_{2}$ and $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in R$;
(iii) if $\left(q_{1}, q_{2}\right) \in R$ and $\left(q_{2}, a, q_{2}^{\prime}\right) \in \Delta_{2}$ then there is $q_{1}^{\prime} \in Q_{1}$ such that $\left(q_{1}, a, q_{1}^{\prime}\right) \in \Delta_{1}$ and $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in R$.

Several Characterisations of Bisimilarity

Bisimilarity:

Given two TS T and T^{\prime}, the following are equivalent:

- [Park81] There is a bisimulation between T and T^{\prime}.
- [Stirling96] Defender has a strategy to never lose in a 2-player game on T and T^{\prime}.
- [Hennessy80] T and T^{\prime} satisfy the same formulas of the Hennessy-Milner logic.

In this case, we say that T and T^{\prime} are strongly bisimilar.

Morphisms of Transition Systems

Morphism of TS:

A morphism of TS $f: T_{1}=\left(Q_{1}, i_{1}, \Delta_{1}\right) \longrightarrow T_{2}=\left(Q_{2}, i_{2}, \Delta_{2}\right)$ is a function

$$
f: Q_{1} \longrightarrow Q_{2}
$$

such that:

- preserving the initial state: $f\left(i_{1}\right)=i_{2}$,
- preserving the transitions: for every $(p, a, q) \in \Delta_{1},(f(p), a, f(q)) \in \Delta_{2}$.
$\mathbf{T S}(\Sigma)=$ category of transition systems and morphisms

Morphisms are functional simulations:

Morphisms are precisely functions f between states whose graph $\left\{(q, f(q)) \mid q \in Q_{1}\right\}$ is a simulation.

Categorical Characterisations

Bisimilarity, using morphisms:

Two TS T and T^{\prime} are bisimilar iff there is a span of functional bisimulations between them.

Transition systems, as pointed coalgebras

Set of transitions, as functions:
There is a bijection between sets of transitions $\Delta \subseteq Q \times \Sigma \times Q$ and functions of type:

$$
\delta: Q \longrightarrow \mathcal{P}(\Sigma \times Q)
$$

where $\mathcal{P}(X)$ is the powerset $\{U \mid U \subseteq X\}$.

Initial states, as functions:

There is a bijection between initial states $i \in Q$ and functions of type:

$$
\iota: * \longrightarrow Q
$$

where $*$ is a singleton.

Pointed coalgebras

Pointed coalgebras:

Given an endofunctor $G: \mathcal{C} \longrightarrow \mathcal{C}$ and an object $I \in \mathcal{C}$, a pointed coalgebra is the following data:

- an object $Q \in \mathcal{C}$,
- a morphism $\iota: l \longrightarrow Q$ of \mathcal{C},
- a morphism $\sigma: Q \longrightarrow G(Q)$ of \mathcal{C}.
G is often decomposed as $T \circ F$, where:
- T : "branching type", e.g, non-deterministic, probabilistic, weighted.

For TS: $T=\mathcal{P}$.

- F : "transition type".

For TS: $F=\Sigma \times{ }_{-}$.
I is often the final object
For TS: $I=*$, the final object.

Morphisms of TS, using Pointed Coalgebras

Morphisms of TS are lax morphisms of pointed coalgebras
A morphism of TS, seen as pointed coalgebras $T=\left(Q_{1}, \iota_{1}, \delta_{1}\right)$ and $T^{\prime}=\left(Q_{2}, \iota_{2}, \delta_{2}\right)$ is the same as a function

$$
f: Q_{1} \longrightarrow Q_{2}
$$

satisfying

Lax Morphisms of Pointed Coalgebras

Lax Morphisms:

Assume there is an order \preceq on every Hom-set of the form $\mathcal{C}(X, G(Y))$. A lax morphism from ($Q_{1}, \iota_{1}, \delta_{1}$) to ($Q_{2}, \iota_{2}, \delta_{2}$) is a morphism

$$
f: Q_{1} \longrightarrow Q_{2}
$$

of \mathcal{C} satisfying

Coal $_{\text {lax }}(G, I)=$ category of pointed coalgebras and lax morphisms.

What about functional bisimulations?

Functional bisimulations are homomorphisms of pointed coalgebras

For two TS, seen as pointed coalgebras $T=\left(Q_{1}, \iota_{1}, \delta_{1}\right)$ and $T^{\prime}=\left(Q_{2}, \iota_{2}, \delta_{2}\right)$, and for a function of the form $f: Q_{1} \longrightarrow Q_{2}$, the following are equivalent:

- The graph $\left\{(q, f(q)) \mid q \in Q_{1}\right\}$ of f is a bisimulation.
- f is a homomorphism of pointed coalgebras, that is, the following diagram commutes:

Bisimilarity, using homomorphisms of pointed coalgebras

 For two TS T and T^{\prime}, the following are equivalent:- T and T^{\prime} are bisimilar.
- There is a span of homomorphisms of pointed coalgebras between T and T^{\prime}.

Homomorphisms of Pointed Coalgebras

Morphisms:

A homomorphism from ($Q_{1}, \iota_{1}, \delta_{1}$) to ($Q_{2}, \iota_{2}, \delta_{2}$) is a morphism

$$
f: Q_{1} \longrightarrow Q_{2}
$$

of \mathcal{C} satisfying

$\operatorname{Coal}(G, I)=$ category of pointed coalgebras and homomorphisms.

Summary

	coalgebra	
data type	$G: \mathcal{C} \rightarrow \mathcal{C}, I \in \mathcal{C}$ \preceq on $\mathcal{C}(X, G(Y))$	
systems	pointed coalgebras	
functional simulations	lax morphisms	
functional bisimulations	homomorphisms	
bisimilarity	existence of a span of functional bisimulations	

Runs in a Transition System

Run

A run in a transition system (Q, i, Δ) is sequence written as:

$$
q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} \ldots \xrightarrow{a_{n}} q_{n}
$$

with:

- $q_{j} \in Q$ and $a_{j} \in \Sigma$
- $q_{0}=i$
- for every $j,\left(q_{j}, a_{j+1}, q_{j+1}\right) \in \Delta$

$$
q_{0} \xrightarrow{a} q_{0} \xrightarrow{b} q_{1} \xrightarrow{c} q_{2} \xrightarrow{a} q_{3}
$$

Runs, Categorically

Finite Linear Systems:

A finite linear system is a TS of the form $\left\langle a_{1}, \ldots, a_{n}\right\rangle=([n], 0, \Delta)$ where:

- $[n]$ is the set $\{0, \ldots, n\}$;
- Δ is of the form $\left\{\left(i, a_{i+1}, i+1\right) \mid i \in[n-1]\right\}$ for some a_{1}, \ldots, a_{n} in Σ.

$$
\rightarrow 0 \xrightarrow{a_{1}} 1 \xrightarrow{a_{2}} 2 \quad \cdots \quad n-1 \xrightarrow{a_{n}} n
$$

Runs are morphisms

There is a bijection between runs of T and morphisms of TS between a finite linear system to T.

$$
\rightarrow 0 \xrightarrow{a} 1 \xrightarrow{b} 2 \xrightarrow{c} 3 \xrightarrow{a} 4
$$

Functional Bisimulations, from Lifting Properties of Paths

Functional bisimulations are open maps:

For a morphism f of TS from T to T^{\prime}, the following are equivalent:

- The reachable graph of f, that is, $\{(q, f(q)) \mid q$ reachable $\}$ is a bisimulation.
- f has the right lifting property w.r.t. path extensions, that for every commutative square (in plain):

there is a lifting (in dot), making the two triangles commute.

Bisimilarity, using open maps

For two TS T and T^{\prime}, the following are equivalent:

- T and T^{\prime} are bisimilar.
- There is a span of open maps between T and T^{\prime}.

Open maps

Open map situation:

An open map situation is a category \mathbb{M} (of systems) together with a subcategory $J: \mathbb{P} \hookrightarrow \mathbb{M}$ (of paths).

- $\mathbb{M}=$ category of systems $(E x: T S(\Sigma))$,
- $\mathbb{P}=$ sub-category of finite linear systems.

Open maps:

A morphism $f: T \longrightarrow T^{\prime}$ of \mathbb{M} is said to be open if for every commutative square (in plain):

where $p: P \longrightarrow Q$ is a morphism of \mathbb{P}, there is a lifting (in dot) making the two triangles commute.

Summary

	$\xrightarrow{\text { [Wißman, D., Katsumata, Hasuo - FoSSaCS'19] }}$	
	Non-deterministic branching	
	coalgebra	open maps
data type	$\begin{aligned} & G: \mathcal{C} \rightarrow \mathcal{C}, I \in \mathcal{C} \\ & \preceq \text { on } \mathcal{C}(X, G(Y)) \end{aligned}$	$J: \mathbb{P} \hookrightarrow \mathbb{M}$
systems	pointed coalgebras	objects of \mathbb{M}
functional simulations	lax morphisms	morphisms of \mathbb{M}
functional bisimulations	homomorphisms	open maps
bisimilarity	existence of a span of functional bisimulations	
	[Lasota'02]	
	Small category of paths	

Coalgebra vs open maps

Coalgebras
Pros:

- it is very easy to generalise to other type of branchings (weighted, probabilistic, ...), and other types of state spaces (Stone spaces for Kripke frames, measurable spaces for probabilistic systems, ...)
- there is a rich theory behind.

Con:

- difficult to model any non-local or history-preserving notion of bisimulations (weak bisimulations, timed systems, true concurrency)

> Open Maps
Pro:

- it is very easy to model history-preserving bisimulations.

Cons:

- Limited to non-deterministic branching?
- marginally known and used :-(

Contributions

Negative result

There is no open map situation capturing generative probabilistic systems.

Positive results

- There is a generalised open map situation capturing generative probabilistic systems.
- There is a generalised open map situation capturing branching bisimulations and weak bisimulations.

Open Maps and Probabilistic Systems

Weighted and Probabilistic Systems as Coalgebras

Given a monoid $(K,+, e)$, define the endofunctor \mathcal{W}_{K} :

$$
\begin{array}{rrrl}
\text { sets: } & X & \mapsto \mathcal{W}_{K}(X)=\left\{\mu: X \rightarrow K \mid \mu^{-1}(K \backslash\{e\}) \text { is finite }\right\} \\
\text { maps: } & f: X \rightarrow Y \mapsto \mathcal{W}_{K}(f)(\mu)=\left(y \in Y \mapsto \sum\{\mu(x) \mid x \in X, f(x)=y\}\right)
\end{array}
$$

If (K, \sqsubseteq) is a partial order, $\operatorname{Set}\left(X, \mathcal{W}_{K}(Y)\right)$ is partially ordered in a pointwise manner.

If $(K,+, e, \sqsubseteq)$ is an ordered monoid, then $\mathbf{C o a l}_{\operatorname{lax}}\left(\mathcal{W}_{K}, *\right)$ is a category.

The distribution functor \mathcal{D} (resp. sub-distribution functor $\mathcal{D}_{\leq 1}$) is the sub-functor of $\mathcal{W}_{([0,+\infty),+, 0, \leq)}$ restricted to μ s with $\sum\{\mu(x) \mid x \in X\}=1$ (resp. ≤ 1).

Open Maps for Reactive Systems

[Cheng-Nielsen'95]

There is an open map situation that captures Larsen-Skou bisimilarity.

Proof:

- they consider reactive systems, i.e., coalgebras for $\left(\mathcal{D}\left(_\right)+1\right)^{A}$,
- they define the open map situation in coalgebras for $\left(\mathcal{D}_{\leq 1}^{\epsilon}\left(_\right)+1\right)^{A}$ paths are finite linear systems whose probabilities are infinitesimals
- two proper reactive systems are Larsen-Skou bisimilar iff they is a span of open maps in non-proper systems between them.

Problems:

- the open map situation is defined outside of the category of systems,
- Larsen-Skou bisimilarity here means the underlying TS (forgetting the probabilities) are strong bisimilar.

Impossibility for Generative Systems

Theorem:

There is no open maps situation on $\operatorname{Coal}_{\operatorname{lax}}\left(\mathcal{D}_{\leq 1}\left(_\times A\right), *\right)$ such that open bisimilarity coincides with coalgebraic bisimilarity.

Proof

Impossibility for Generative Systems

Theorem:
There is no open maps situation on $\operatorname{Coal}_{\operatorname{lax}}\left(\mathcal{D}_{\leq 1}\left(_\times A\right), *\right)$ such that open bisimilarity coincides with coalgebraic bisimilarity.

Proof

Solution

Generalised Open Maps

Generalised open maps situation:

A generalised open maps situation on \mathbb{M} is the following data:

- a set V together with a function $J: V \rightarrow o b(\mathbb{M})$,
- two small categories \mathbb{E} and \mathbb{S} whose sets of objects are V,
- two functors $J_{\mathbb{E}}: \mathbb{E} \rightarrow \mathbb{M}$ and $J_{\mathbb{S}}: \mathbb{S} \rightarrow \mathbb{M}$ coinciding with J on objects.

Ex: usual open maps are for $\mathbb{E}=\mathbb{P}$ and $\mathbb{S}=|\mathbb{P}|$.

Generalised open maps

We say that a morphism $f: X \longrightarrow Y$ is (\mathbb{E}, \mathbb{S})-open if:

Generalised Open Maps Situation for Weighted Systems

Two types of "paths":

$$
\rightarrow 0 \xrightarrow{\left(a_{\mathbf{1}}, k_{\mathbf{1}}\right)} 1 \xrightarrow{\left(a_{\mathbf{2}}, k_{\mathbf{2}}\right)} \cdots \xrightarrow{\left(a_{n}, k_{n}\right)} n
$$

$$
\left.\rightarrow 0 \xrightarrow{\left(a_{\mathbf{1}}, k_{1}\right)} 1 \xrightarrow{\left(a_{\mathbf{2}}, k_{2}\right)} \cdots \xrightarrow{\left(a_{n}, k_{n}\right)} n \xrightarrow[\left(b, /_{m}\right)]{\left(b, l_{1}\right)} \begin{array}{c}
(n+1,1) \\
\vdots \\
(n+1, m)
\end{array}\right)
$$

Extensions $\left(\mathbb{E}_{K}\right)$

Mergings $\left(\mathbb{S}_{K}\right)$

$$
\left.\rightarrow 0 \xrightarrow{\left(a_{1}, k_{1}\right)} 1 \xrightarrow{\left(a_{2}, k_{2}\right)} \cdots \xrightarrow{\begin{array}{c}
s: \begin{array}{l}
i \leq n \rightarrow i \\
(n+1, j) \mapsto(n+1, s(j)) \\
s \text { monotone surjective }
\end{array} \\
\left(a_{n}, k_{n}\right)
\end{array} n \xrightarrow{\left(b, \sum\left\{j, \sum(t \mid j(j)=1\}\right)\right.}(n+1,1)} \begin{array}{c}
(j, j(j)=\rho\}) \\
\vdots \\
n+1, p)
\end{array}\right)
$$

Generalised Open \simeq Coalgebraic, for Weighted Systems

Theorem

If K is a positive strict rearrangement monoid, then for a morphism of Coal $_{\text {lax }}\left(\mathcal{W}_{K}\left(_\times A\right), *\right)$ whose domain is reachable, the following assertions are equivalent:

- it is $\left(\mathbb{E}_{K}, \mathbb{S}_{K}\right)$-open,
- it is a coalgebra homomorphism.

Ex: $K=\mathbb{R}_{+}, \mathbb{Q}_{+}, \mathbb{N}$, or any distributive lattice

Theorem

If K is a positive strict rearrangement monoid, then two pointed coalgebras of Coal ${ }_{\text {ax }}\left(\mathcal{W}_{K}\left(_\times A\right), *\right)$ are $\left(\mathbb{E}_{K}, \mathbb{S}_{K}\right)$-open bisimilar iff they are coalgebraically bisimilar.

Generalised Open \simeq Coalgebraic, for Generative Probabilistic Systems

We can define a generalised open map situation $\left(\mathbb{E}_{g p s}, \mathbb{S}_{g p s}\right)$ on Coal lax $\left(\mathcal{D}_{\leq 1}\left(_\times A\right), *\right)$ by restricting $\left(\mathbb{E}_{\mathbb{R}_{+}}, \mathbb{S}_{\mathbb{R}_{+}}\right)$.

Theorem

For a morphism of $\operatorname{Coal}_{\operatorname{lax}}\left(\mathcal{D}_{\leq 1}\left(_\times A\right), *\right)$ whose domain is reachable, the following assertions are equivalent:

- it is $\left(\mathbb{E}_{g p s}, \mathbb{S}_{g p s}\right)$-open,
- it is a coalgebra homomorphism.

Theorem

Two pointed coalgebras of $\operatorname{Coal}_{\mathrm{ax}}\left(\mathcal{D}_{\leq 1}\left(_\times A\right), *\right)$ are $\left(\mathbb{E}_{g p s}, \mathbb{S}_{g p s}\right)$-open bisimilar iff they are coalgebraically bisimilar.

Conclusion

- Presented here:
- No open maps situations for generative probabilistic systems.
- A generalisation of open maps to allow merging in addition to extensions.
- A generalised open map situation for weighted and generative probabilistic systems.
- In the paper, but not presented:
- Two notions of bisimulation relations (strong path and path) associated with generalised open maps.
- A generalised open map situation such that:
\star open bisim. $\simeq \exists$ strong path bisim. $\simeq \exists$ branching bisim.
$\star \exists$ path bisim. $\simeq \exists$ weak bisim.
- Future work:
- New Instances: Quantitative Petri Nets? Higher Dimensional Automata?
- Which branching types are we capturing?

