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Abstract

Bisimulation and bisimilarity are fundamental notions in comparing state-based systems.
Their extensions to a variety of systems have been actively pursued in recent years, a notable
direction being quantitative extensions. In this paper we enhance a categorical framework
for such extended (bi)simulation notions. We use coalgebras as system models and fibra-
tions for organizing predicates—following the seminal work by Hermida and Jacobs. Endo-
functor liftings are crucial predicate-forming ingredients; the first contribution of this work
is to extend several extant lifting techniques from particular fibrations to 𝐂𝐋𝐚𝐭∧-fibrations
over 𝐒𝐞𝐭. The second contribution of this work is to introduce endolifting morphisms as a
mechanism for comparing predicates between fibrations. We apply these techniques by de-
riving some known properties of the Hausdorff pseudometric and approximate bisimulation
in control theory.
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1 Introduction

In the study of transition systems, bisimulation relations are a fundamental concept, and their
categorical study revealed the importance of coalgebras. One approach to characterize bisimi-
larity is via liftings of the coalgebra functor along fibrations [17], which are a well-established
framework to attach relational structures on categories for modeling transition systems and pro-
gramming languages [19].
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Recently, there is emerging interest in quantitative analysis of transition systems. Behavioural
metrics were introduced in [10, 29] to refine bisimilarity for probabilistic transition systems.
Metrics give a real number for each pair of states in a transition system, while a relation can
only provide a bit for each pair. Therefore a metric can indicate a degree to which the behaviour
of two states differ, whereas a bisimilarity relation can only indicate whether or not those be-
haviours differ. From this observation, a common desideratum for behavioral metrics associated
with coalgebras is that two states should have distance 0 if and only if they are bisimilar.

Bisimilarity and behavioural metrics are also analogous on a categorical level. Behavioural
metrics were recently shown to be constructible from liftings of the coalgebra functor to cate-
gories of (pseudo)metrics [4, 5], similar to how Hermida-Jacobs bisimulations are constructed
from liftings of a functor to the category of relations. This type of construction is known gen-
erally as a coalgebraic predicate and can be performed when a lifting of the coalgebra functor
is known.

These developments present two natural issues. The first is an open-ended quest for liftings
of functors in general fibrations. These liftings are the rare ingredients in forming coalgebraic
predicates, so having more liftings in more fibrations allows us to express more coalgebraic
predicates. The second issue is more recent and concerns the desired relationship between be-
havioural metrics and bisimilarity mentioned above. Given some liftings in different fibrations,
is there a relationship between the liftings we can use to verify a relationship between the coal-
gebraic predicates they define on a given coalgebra?

The main purpose of this paper is to provide solutions to these issues within the context
of 𝐂𝐋𝐚𝐭∧-fibrations over 𝐒𝐞𝐭; technically speaking, they are the fibrations where fiber cate-
gories are complete lattices and reindexing functors preserve all meets. This class of fibrations
is a convenient setting for the general theory of bisimulation and bisimilarity. It contains for-
getful functors from many well-known categories, such as categories of topological spaces,
pseudometric spaces, binary relations, quantale-enriched small categories, and so on. The main
contributions of this paper pertain to these two issues:

• Regarding the first issue, we propose several methods to lift functors along𝐂𝐋𝐚𝐭∧-fibrations
over 𝐒𝐞𝐭. The lifting method we introduce generalize several existing constructions. The
first is the codensity lifting of endofunctors, generalizing Baldan et al.’s Kantorovich lift-
ing [5] to arbitrary 𝐂𝐋𝐚𝐭∧-fibrations over 𝐒𝐞𝐭. This lifting also represents a further de-
velopment of the codensity lifting of monads [21]. The second is the construction of an
enriched left Kan extension using the canonical symmetric monoidal closed structure [23]
on the total category of 𝐂𝐋𝐚𝐭∧-fibrations over 𝐒𝐞𝐭. This generalizes Balan et al.’s con-
struction [4] of enriched left Kan extension for quantale-enriched small categories. The
third is a reformulation and generalization of Bonchi et al.’s Wasserstein lifting [6] using
Hermida’s adjoint lifting theorem for opfibrations [16]. We also introduce the bifibration
of liftings of endofunctors, in which we can manipulate liftings. As an example, we con-
struct the Hausdorff metric as the pushforward of the lifting of the list functor along a
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particular natural transformation.
• Regarding the second issue, we propose a concept of morphism between liftings. We use

them to provide facilities for establishing relationships between the coalgebraic predi-
cates provided by these liftings on coalgebras. We illustrate the utility of this approach
with several examples. First, we show that the specialization preorder construction trans-
lates bisimilarity topologies on coalgebras of polynomial functors to bisimilarity rela-
tions. Second, we translate metrics to relations to show the kernels of many behavioural
metrics are bisimilarity relations. Third, we demonstrate the translation of approximate
functions to 𝜖-approximate relations [14], which is the key technical tool used in control
theory.

Outline. In Section 2, we sketch the important technical background for this work, including
partial order fibrations (over 𝐒𝐞𝐭) and Hermida and Jacobs’ theory of coalgebraic bisimulations
in fibrations. As mentioned above, the theory requires a lifting of a functor, and the general ques-
tion is the construction of liftings, which we address in Section 5. In Section 3, we concretely
illustrate the constructions of topological and relational bisimilarities and their comparison us-
ing the specialization order functor. In Section 4 we survey the properties of 𝐂𝐋𝐚𝐭∧-fibration
over 𝐒𝐞𝐭 in detail. In Section 5 we present generalizations of several extant techniques for pro-
ducing liftings in particular fibrations to our more general class of 𝐂𝐋𝐚𝐭∧-fibrations over 𝐒𝐞𝐭.
Finally, in Section 6, we use so-called morphisms between endoliftings to establish relation-
ships between coalgebraic predicates, focusing how topological / metric bisimilarity induces
bisimilarity relations. We also illustrate an example of this story from control theory: deriving
approximate functions from 𝜖-approximate relations and deriving bisimilarity as the kernel of
behavioural metrics.

This is an extended version of [28]; many proofs not present in the conference version have
been added. We have added (Example 4.3) a description of the symmetric monoidal closed
structure on 𝑄-𝐂𝐚𝐭, (Section 5.4) a reformulation of Bonchi et al’s Wasserstein lifting [6] in
𝐂𝐋𝐚𝐭∧-fibrations and (Theorem 4.3) a characterization of fibered functors between 𝐂𝐋𝐚𝐭∧-
fibrations preserving fibered meets. A major new example includes a class of liftings of functors
to 𝐓𝐨𝐩, which we show create special topologies on coalgebras with the property that two points
are topologically indistinguishable if and only if they are bisimilar. We manage to prove this
property with the aid of morphisms between liftings. We also fix the incorrect definition of the
tensor unit of the symmetric monoidal closed structure (Section 4.2) in the conference version.

2 Background on Fibrational Coalgebra

In this paper, we are interested in creating and comparing mathematical structures (e.g., re-
lations, topologies, pseudometrics) defined on different kinds of transition systems (e.g., non-

3



deterministic, probabilistic, weighted, transducers) with different properties (e.g., bisimilarities,
language inclusions, behavioural metrics).

We capture these three different components with three largely orthogonal categorical ab-
stractions. First, we use coalgebras as a means of modeling many kinds of transition systems.
Second, fibrations define the type of mathematical structures we can create on the set of states
of a coalgebra. Third, functor liftings create particular instances in the fibration with different
properties. We review each of these categorical concepts in this section. We assume familiarity
with basic category theory, but not necessarily with the theory of fibrations.

2.1 Coalgebras

Coalgebra is our tool of choice for modeling state-based transition systems. Given an endo-
functor 𝐹 on 𝐒𝐞𝐭, an 𝐹 -coalgebra in 𝐒𝐞𝐭 is a pair (𝐼, 𝑓 ) consisting of a set 𝐼 and a function
𝑓 ∶ 𝐼 → 𝐹𝐼 . The set is often called the carrier of the coalgebra, while the function provides
the transition structure of the coalgebra.

This pair is usually interpreted as a transition system under the following scheme. The
(object part of the) functor 𝐹 is thought of as an operation which sends a set of states to the
set of all possible transition structures on that set. The set 𝐼 is the set of states of a transition
system. Then 𝐹𝐼 is the set of all possible transition structures available on this set of states 𝐼 ,
so the transition structure map 𝑓 ∶ 𝐼 → 𝐹𝐼 assigns one of these possible transition structures
to every state in 𝐼 .

A coalgebra morphism ℎ ∶ (𝐼, 𝑓 ) → (𝐽 , 𝑔) is a function on the underlying state sets ℎ ∶ 𝐼 →

𝐽 which respects the transitions in the source coalgebra, meaning 𝑔◦ℎ = 𝐹ℎ◦𝑓 . 𝐹 -coalgebras
together with their morphisms form a category we denote by 𝐂𝐨𝐚𝐥𝐠(𝐹 ).

By varying the functor𝐹 , we can capture a wide variety of transition system types, including
deterministic and nondeterministic finite automata, Mealy and Moore machines, probabilistic
transition systems, Markov decision processes, Segala systems and many more. For more back-
ground on the theory of coalgebra, we recommend consulting [27].

2.2 Fibrations

A fibration over a category 𝔹 is a functor 𝜋 ∶ 𝔼 → 𝔹 with the cartesian lifting property, which
we describe later. The source category of the fibration, 𝔼, is referred to as the total category
and the target, 𝔹, is the base category. In this work, we usually consider fibrations over 𝐒𝐞𝐭
since we build extra structures on 𝐒𝐞𝐭-based coalgebras. Indeed, the total categories we are
most interested in are sets equipped with some extra structure, such as sets with relations or sets
with metrics. In many of these cases, the forgetful functor is a fibration.
Example 2.1. The forgetful functors from the following categories to 𝐒𝐞𝐭 are fibrations:

• 𝐏𝐫𝐞 is the category of preorders and monotone functions between them.
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• 𝐄𝐑𝐞𝐥 is the category of endorelations. An object is a pair (𝐼, 𝑅) of a set 𝐼 and a relation
𝑅 ⊆ 𝐼 × 𝐼 . Morphisms are functions which preserve the relation, meaning 𝑓 ∶ (𝐼, 𝑅) →
(𝐽 , 𝑆) is a function 𝑓 ∶ 𝐼 → 𝐽 such that (𝑖, 𝑖′) ∈ 𝑅 implies (𝑓 (𝑖), 𝑓 (𝑖′)) ∈ 𝑆.

• Objects of 𝐁𝐕𝐚𝐥 are pairs (𝐼, 𝑟) of a set 𝐼 and a function 𝑟 ∶ 𝐼 × 𝐼 → ℝ+ with no
constraints. We regard 𝑟 as the most relaxed form of metrics on 𝐼 . Morphisms in this
category are required to be non-expansive, so 𝑓 ∶ (𝐼, 𝑟) → (𝐽 , 𝑠) satisfies 𝑠(𝑓 (𝑖), 𝑓 (𝑖′)) ≤
𝑟(𝑖, 𝑖′) for all 𝑖, 𝑖′ ∈ 𝐼 .

• 𝐓𝐨𝐩 is the category of topological spaces and continuous functions between them.

In this article, we write 𝜋ℂ to mean the forgetful functors from those categories (ℂ =
𝐏𝐫𝐞,𝐄𝐑𝐞𝐥,𝐁𝐕𝐚𝐥,𝐓𝐨𝐩). We also use this notation to refer to the forgetful functors from those of
Example 4.1.

The total category of a fibration is often depicted vertically above the base category and
language referencing this physical configuration is common. Saying an object or a morphism 𝑒
in 𝔼 is above an object or a morphism 𝑏 in 𝔹 means 𝜋𝑒 = 𝑏.

The collection of objects and morphisms above an object 𝐼 and the identity morphism id𝐼 ,
respectively, is called the fiber over 𝐼 . Each of these fibers is itself a subcategory of 𝔼, denoted
by 𝔼𝐼 . For example, 𝐄𝐑𝐞𝐥𝐼 is the category of relations on 𝐼 with a morphism from (𝐼, 𝑅) to
(𝐼, 𝑆) if (𝑖, 𝑖′) ∈ 𝑅 implies (𝑖, 𝑖′) ∈ 𝑆 (that is, 𝑅 ⊆ 𝑆). Hence, 𝐄𝐑𝐞𝐥𝐼 is a thin category
isomorphic to the complete lattice of relations on 𝐼 .

Each of these examples has a peculiar feature. In the fibration 𝐄𝐑𝐞𝐥, given a function 𝑓 ∶
𝐼 → 𝐽 and a relation 𝑆 ⊆ 𝐽 × 𝐽 on 𝐽 , there is a largest relation 𝑅 on 𝐼 so that 𝑓 becomes a
relation-preserving function (i.e., a morphism in 𝐄𝐑𝐞𝐥): (𝑖, 𝑖′) ∈ 𝑅 if and only if (𝑓 (𝑖), 𝑓 (𝑖′)) ∈
𝑆. In 𝐓𝐨𝐩, given a topology on 𝐽 , the coarsest topology on 𝐼 making 𝑓 a continuous function
fulfills a similar role. The cartesian lifting property is a categorification of these observations.

First, we introduce the concept of cartesian morphisms. Let 𝜋 ∶ 𝔼 → 𝔹 be a functor.
For objects 𝑋, 𝑌 ∈ 𝔼 and a morphism 𝑓 ∶ 𝜋𝑋 → 𝜋𝑌 in 𝔹, by 𝔼𝑓 (𝑋, 𝑌 ) we mean the set
{ ̇𝑓 ∈ 𝔼(𝑋, 𝑌 ) | ̇𝑓 is above 𝑓}. A morphism ̇𝑓 ∶ 𝑋 → 𝑌 in 𝔼 is called cartesian if for any
𝑍 ∈ 𝔼 and 𝑔 ∶ 𝜋𝑍 → 𝜋𝑋, the following postcomposition function is invertible:

̇𝑓◦− ∶ 𝔼𝑔(𝑍,𝑋) → 𝔼𝜋 ̇𝑓◦𝑔(𝑍, 𝑌 ).

Equivalently, ̇𝑓 satisfies the following universal property: for any ℎ̇ ∶ 𝑍 → 𝑌 above 𝜋 ̇𝑓◦𝑔,
there exists a unique �̇� ∶ 𝑍 → 𝑋 above 𝑔 such that ̇𝑓◦�̇� = ℎ̇.

Cartesian morphisms in 𝐄𝐑𝐞𝐥 preserve and reflect their source relation, and in 𝐁𝐕𝐚𝐥 they
are isometries, replacing the inequality in the condition for non-expansiveness with equality.

We then say that 𝜋 ∶ 𝔼 → 𝔹 is a fibration if it satisfies the following cartesian lifting
property: for every morphism 𝑓 ∶ 𝐼 → 𝐽 in 𝔹 and every object 𝑌 in 𝔼 above 𝐽 , there is a
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cartesian morphism ̇𝑓 into 𝑌 above 𝑓 . The morphism ̇𝑓 is called the cartesian lifting of 𝑓 with
𝑌 . We assume that we have chosen a cartesian lifting for each pair (𝑓, 𝑌 ), and denote it by
𝑓 (𝑌 ) ∶ 𝑓 ∗𝑌 → 𝑌 .

For a 𝔹-morphism 𝑓 ∶ 𝐼 → 𝐽 , the assignment 𝑌 ↦ 𝑓 ∗𝑌 becomes a functor of type
𝔼𝐽 → 𝔼𝐼 . This is called the pullback (functor) along 𝑓 .1 Moreover the assignment 𝑓 ↦

𝑓 ∗ is functorial up-to natural isomorphisms (𝑔◦𝑓 )∗ ≅ 𝑓 ∗◦𝑔∗ and id∗𝐼 ≅ Id𝔼𝐼
. When these

isomorphisms are identities, the fibration is called split.
A partial order fibration is a fibration where each fiber category 𝔼𝐼 is a partial order. They

are split and always faithful as functors. We introduce a notation in a partial order fibration
𝜋 ∶ 𝔼 → 𝔹: for objects 𝑋, 𝑌 ∈ 𝔼 and a 𝔹-morphism 𝑓 ∶ 𝜋𝑋 → 𝜋𝑌 , by 𝑓 ∶ 𝑋 →̇ 𝑌 we mean
the sentence: “there exists a (necessarily unique) 𝔼-morphism ̇𝑓 ∶ 𝑋 → 𝑌 such that 𝜋 ̇𝑓 = 𝑓”.

2.3 Liftings

Another major object of study in this work are liftings of a functor. Given an endofunctor 𝐹 on
𝐒𝐞𝐭 and two fibrations 𝜋 ∶ 𝔼 → 𝐒𝐞𝐭 and 𝜌 ∶ 𝔽 → 𝐒𝐞𝐭, a lifting of 𝐹 is a functor �̇� ∶ 𝔼 → 𝔽
such that 𝜌◦�̇� = 𝐹◦𝜋.

𝔼
𝜋
��

�̇� // 𝔽
𝜌
��

𝐒𝐞𝐭
𝐹

// 𝐒𝐞𝐭

Such a lifting can be restricted to the functor �̇� |𝐼 ∶ 𝔼𝐼 → 𝔽𝐹𝐼 between fibers over any set 𝐼 . In
many of the cases we consider 𝜋 = 𝜌. To emphasize this particular situation we will call such
an �̇� an endolifting of 𝐹 along 𝜋. When the fibration can be inferred, we simply say that �̇� is
an 𝔼 lifting of 𝐹 . In [15], endoliftings were called modalities.

Fibrational pullback and endoliftings in the total category are used to create “coalgebraic
predicates” in [15] on individual coalgebras in a process we describe in the next section. These
are abstract predicates which generalize both classical predicates and relations in the context
of a categorical logic based on fibrations, see [19]. However, we will call these structures
“coinductive invariants” to avoid the implication they are sets of states.

3 Motivation: Coinductive Relations and Topologies

In this section, we concretely illustrate the creation of coinductive invariants and an example of
a comparison we would like to make between two such invariants. As a running example, we
consider a particular coalgebra for the functor 𝐹𝑋 = 2 × 𝑋 × 𝑋. For convenience, we name
the elements of 2 = {⊤,⊥}.

1In this paper we shall use the word pullback in this fibrational sense. This usage generalizes the word’s common
meaning as a limit of a cospan in a category. Specifically, the latter gives a (fibrational) pullback in a codomain
fibration. See [19].
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Example 3.1. Let 𝐼 = {𝑥, 𝑦, 𝑧, 𝑤} and 𝛿 ∶ 𝐼 → 2 × 𝐼 × 𝐼 be defined by 𝛿(𝑥) = (⊤, 𝑥, 𝑦),
𝛿(𝑦) = (⊥, 𝑥, 𝑦), 𝛿(𝑧) = (⊥, 𝑥, 𝑧) and 𝛿(𝑤) = (⊥, 𝑧, 𝑥).

This coalgebra represents a DFA on the alphabet {𝑎, 𝑏} where ⊤ / ⊥ gives acceptance /
rejection to a state, the second component of the transition structure names the next state after
reading 𝑎, and the third component gives the state after reading 𝑏.

𝑥 𝑦

𝑧𝑤

𝑎
𝑏

𝑎
𝑏

𝑎

𝑏𝑎

𝑏

3.1 Creating Coinductive Relations

Creating coinductive invariants requires two basic ingredients: a pullback in a fibration and an
endolifting of the coalgebra functor. In the case of the fibration 𝐄𝐑𝐞𝐥, these have two core roles:

• Given a function 𝑓 ∶ 𝑋 → 𝑌 and relation 𝑆 ⊆ 𝑌 ×𝑌 on 𝑌 , the relation pullback produces
a relation on 𝑋, namely 𝑓 ∗𝑆 defined by (𝑥, 𝑥′) ∈ 𝑓 ∗𝑆 if and only if (𝑓 (𝑥), 𝑓 (𝑥′)) ∈ 𝑆.
In particular, the relation pullback along a coalgebra structure 𝑓 ∶ 𝑋 → 2 ×𝑋 ×𝑋 takes
a relation on 2 ×𝑋 ×𝑋 and produces a relation on 𝑋.

• Given a relation 𝑅 on 𝑋, a relation lifting produces a relation on the set 2 ×𝑋 ×𝑋.

The basic idea of Hermida and Jacobs [17] is to refine the complete relation on the state space
by alternating these two operations. In pseudocode, this looks like Algorithm 1. This sequence
eventually reaches a fixed point (perhaps requiring transfinitely many steps) by monotonicity
arguments we will cover later.
Algorithm 1 Pseudocode for the creation of a coinductive invariant
Input: A coalgebra 𝛿∶ 𝐼 → 2 × 𝐼 × 𝐼 , and a relation lifting of 𝐹 .
Output: The coinductive invariant of 𝛿 created by the lifting.

1: 𝑅0 = 𝐼 × 𝐼 ; 𝑆0 = lifting(𝑅0); i = 0;
2: do
3: i = i+1;
4: 𝑅𝑖 = 𝛿∗𝑆𝑖−1; ⊳ pullback
5: 𝑆𝑖 = lifting(𝑅𝑖);
6: while 𝑅𝑖 ≠ 𝑅𝑖−1
7: return 𝑅𝑖;

Perhaps the most famous example of this process is the definition of bisimilarity due to
Hermida and Jacobs [17]. This uses the “canonical relation lifting”, see Definition 5.1
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Definition 3.1. The canonical relation lifting of 𝐹𝑋 = 2×𝑋×𝑋 is a functor 𝑅𝑒𝑙(𝐹 ) ∶ 𝐄𝐑𝐞𝐥 →
𝐄𝐑𝐞𝐥 defined by 𝑅𝑒𝑙(𝐹 )(𝑋,𝑅) = (2 × 𝑋 × 𝑋,Δ2 × 𝑅 × 𝑅) on objects and by 𝑅𝑒𝑙(𝐹 )(𝑓 ) =
(id2, 𝑓 , 𝑓 ) on morphisms. Here Δ2 = {(⊤,⊤), (⊥,⊥)} is the diagonal relation on 2.

Example 3.2. We compute the coinductive invariant created by the canonical relation lifting
on the coalgebra of Example 3.1. This relation turns out to be the bisimilarity relation of this
coalgebra.

We start with 𝑅0 = {(𝑖, 𝑗) | 𝑖, 𝑗 ∈ 𝐼}. Immediately, 𝑆0 = Δ2 × 𝑅0 × 𝑅0.
Next, 𝑅1 = 𝛿∗𝑆0 = {(𝑥, 𝑥)} ∪ {(𝑖, 𝑗) | 𝑖, 𝑗 ∈ {𝑦, 𝑧,𝑤}}, since neither (⊤,⊥) nor (⊥,⊤) are

in Δ2. The relation lifting then gives 𝑆1 = Δ2 × 𝑅1 × 𝑅1.
In the next iteration of the loop, we get 𝑅2 = 𝛿∗𝑆1 = {(𝑥, 𝑥)} ∪ {(𝑤,𝑤)} ∪ {(𝑖, 𝑗) | 𝑖, 𝑗 ∈

{𝑦, 𝑧}}, further refining 𝑅1. In 𝑅2, 𝑥 is related only to itself for the same reason as in 𝑅1, but
𝑤 is also related only to itself since the second component of its transition (𝑧) is not related to
the second component of 𝑦 or 𝑧’s transition (𝑥) in 𝑅1.

𝑅3 is exactly 𝑅2, so 𝑅2 is the coinductive invariant generated by this relation lifting, and
indeed is the bisimilarity relation on this coalgebra.

If we change the relation lifting, we get a different coinductive invariant. As an example,
consider the following relation lifting:
Definition 3.2. The language inclusion lifting of 𝐹𝑋 = 2×𝑋×𝑋 is a functor 𝐿𝑖(𝐹 ) ∶ 𝐄𝐑𝐞𝐥 →
𝐄𝐑𝐞𝐥 defined by 𝐿𝑖(𝐹 )(𝑋,𝑅) = (2 ×𝑋 ×𝑋,≤2 ×𝑅 ×𝑅) where ≤2 = {(⊥,⊥), (⊥,⊤), (⊤,⊤)}.

The coinductive invariant created by this lifting is the language inclusion relation. We illus-
trate this by computing it for our example coalgebra.
Example 3.3. We compute the coinductive invariant created by the language inclusion lifting
on the coalgebra of Example 3.1. Just as in Example 3.2, 𝑅0 = {(𝑖, 𝑗) | 𝑖, 𝑗 ∈ 𝐼} and 𝑆0 =
≤2 × 𝑅0 × 𝑅0.

Next, 𝑅1 = 𝛿∗𝑆0 = 𝑅0 ∖ {(𝑥, 𝑦), (𝑥, 𝑧), (𝑥,𝑤)} since ⊤ ≰2 ⊥.
To compute 𝑅2, we note that (𝑥, 𝑧) ∉ 𝑅1, so since 𝛿(𝑤) = (⊥, 𝑧, 𝑥) and 𝛿(𝑧) = (⊥, 𝑥, 𝑧),

we must have (𝛿(𝑧), 𝛿(𝑤)), (𝛿(𝑤), 𝛿(𝑧)) ∉ 𝑆1. Similar reasoning shows 𝑤 is not related to 𝑦
in either order under 𝑅2. Further, (𝛿(𝑦), 𝛿(𝑥)), (𝛿(𝑧), 𝛿(𝑥)) ∈ 𝑆1 but not conversely, and that
(𝛿(𝑦), 𝛿(𝑧)), (𝛿(𝑧), 𝛿(𝑦)) ∈ 𝑆1. Hence 𝑅2 = Δ𝐼 ∪ {(𝑦, 𝑥), (𝑧, 𝑥), (𝑦, 𝑧), (𝑧, 𝑦)}.

It is straightforward to check that 𝑅3 = 𝑅2, so 𝑅2 is the coinductive invariant created by
this lifting.

Notice that this relation is indeed the language inclusion relation for this automaton: 𝑥
accepts the language {𝜖} + {𝑎, 𝑏}∗𝑎, both 𝑦 and 𝑧 accept the language {𝑎, 𝑏}∗𝑎 and 𝑤 accepts
the language {𝑏} + {𝑎, 𝑏}+𝑎.

8



3.2 Creating Coinductive Topologies

We can use essentially the same components in the fibration 𝐓𝐨𝐩 of topological spaces to create
coinductive invariants in this fibration.

• The pullback operation in the fibration 𝜋𝐓𝐨𝐩 ∶ 𝐓𝐨𝐩 → 𝐒𝐞𝐭 is given by the initial topol-
ogy. Given a topological space (𝑌 , 𝜎) and a function 𝑓 ∶ 𝑋 → 𝑌 , the initial topol-
ogy 𝑓 ∗(𝑌 , 𝜎) (see e.g. [1, Example 8.8(2)]) is the coarsest topology on 𝑋 such that 𝑓
becomes a continuous function of type 𝑓 ∗(𝑌 , 𝜎) → (𝑌 , 𝜎). Explicitly, it is given by
𝑓 ∗(𝑌 , 𝜎) ≜ (𝑋, {𝑓−1[𝑂] | 𝑂 ∈ 𝜎}).

• Given a topology 𝜏 on 𝑋, a topological lifting for the functor 𝐹 produces a topology on
the set 2 ×𝑋 ×𝑋. There are multiple possible topological liftings for a functor.

By starting with the coarsest possible topology on a state space 𝑋, the indiscrete topology
{∅, 𝑋}, and alternating applications of lifting and pullback until we reach a fixpoint, we create
topologies on coalgebras.
Definition 3.3. The Sierpiński topology lifting of 𝐹𝑋 = 2×𝑋×𝑋 is a functor 𝑆𝑖(𝐹 ) ∶ 𝐓𝐨𝐩 →

𝐓𝐨𝐩 taking (𝑋, 𝜏) to (2 ×𝑋 ×𝑋, 𝑠 × 𝜏 × 𝜏), where 𝑠 = {∅, {⊤}, 2} is the Sierpiński topology
on 2 and × in the second component denotes the product topology.

Example 3.4. We compute the coinductive invariant created on the coalgebra of Example 3.1
by the Sierpiński topology lifting. In this computation, we will denote topologies on the state
space by 𝜏𝑖 and topologies on the transition space by 𝜎𝑖.

We start with 𝜏0 = {∅, 𝐼}, which means 𝜎0 = {∅, {⊤} × 𝐼 × 𝐼, 2 × 𝐼 × 𝐼}.
The 𝛿-preimages of the sets in 𝜎0 form 𝜏1 = {∅, {𝑥}, 𝐼}. Therefore, a basis for 𝜎1 consists

of nine sets—the empty set and all eight combinations of the two nonempty sets in each of the
three topologies in the product. Note that unlike 𝜎0, this basis is not union-closed.

Though writing out 𝜎1 in full is distractingly large, we can still compute 𝜏2 relatively easily
since the preimages of a basis form a basis of the initial topology. All basis elements with {⊤}
in their first component have preimage {𝑥}, so we need only consider basis elements starting
with 2. The preimage of 2 × {𝑥} × 𝐼 is {𝑥, 𝑦, 𝑧}, the preimage of 2 × 𝐼 × {𝑥} is {𝑤}, and the
remaining basis elements yield sets in 𝜏1. Thus, 𝜏2 = {∅, {𝑥}, {𝑤}, {𝑥,𝑤}, {𝑥, 𝑦, 𝑧}, 𝐼}.

It takes much more (straightforward) work to compute 𝜏3, but it turns out 𝜏3 = 𝜏2.

3.3 Comparing Coinductive Invariants

Having seen the computations of three different coinductive invariants on the same coalgebra
terminate at the third step, a natural question is whether there is any relationship between the
topologies and relations computed in Examples 3.2, 3.3 and 3.4. In fact, there is a very close
relationship via the specialization preorder, which we recall next.
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Definition 3.4. Let (𝑋, 𝜏) be a topological space. The specialization preorder on this topology,
which we denote Spec(𝜏), is the relation defined by (𝑥, 𝑥′) ∈ Spec(𝜏) if and only if every open
set containing 𝑥 also contains 𝑥′.

It is straightforward to check that the specialization preorder of the Sierpiński coinductive
invariant computed in Example 3.4 is precisely the relation computed in Example 3.3.
Example 3.5. In the topology 𝜏2 of Example 3.4, every open set containing 𝑦 or 𝑧 also contains
𝑥, so (𝑦, 𝑥), (𝑧, 𝑥) ∈ Spec(𝜏2). Similarly, every open set containing 𝑦 or 𝑧 contains the other,
so these are equivalent in Spec(𝜏2). Finally, {𝑤} is itself open, so 𝑤 is related only to itself in
Spec(𝜏2). Hence, Spec(𝜏2) = 𝑅2 of Example 3.3.

In fact, the eagle-eyed reader may notice that Spec(𝜏𝑖) = 𝑅𝑖 from these examples.

Of course, we really are interested in establishing this as a general fact, that for all coalgebras
of the functor 𝐹𝑋 = 2 × 𝑋 × 𝑋 the specialization preorder of the topology created by 𝑆𝑖(𝐹 )
is exactly the relation created by 𝐿𝑖(𝐹 ), language inclusion. Even better would be a proof that
works for many different functors, so we could cover large families of functors in 𝐄𝐑𝐞𝐥 and
𝐓𝐨𝐩 simultaneously. The results established in this paper, such as Proposition 6.1, provide an
appropriate categorical framework in which we can use to compare many different kinds of
coinductive invariants: relations and topologies via specialization preorder (Proposition 6.2),
behavioural metrics and bisimilarity via kernel relations (Corollary 6.2), etc.

3.4 𝐂𝐋𝐚𝐭∧-Fibrations and General Coinductive Invariants

One issue we have not confronted is the convergence of this procedure. We first note that in each
of these fibrations, the fibers 𝐄𝐑𝐞𝐥𝐼 and 𝐓𝐨𝐩𝐼 are complete lattices. The functoriality of liftings
and pullbacks means they are monotone functions on these lattices. Hence, their composition
is a monotone function on 𝔼𝐼 and by Knaster-Tarski has a greatest fixed point, which we reach
by possibly transfinitely many applications of the function from the top element in the complete
lattice.

In this paper, we will therefore focus on partial order fibrations 𝜋 ∶ 𝔼 → 𝐒𝐞𝐭 such that
1) each fiber category 𝔼𝐼 is a complete lattice and 2) pullbacks preserve all meets in fibers.
Such fibrations bijectively correspond to functors of type 𝐒𝐞𝐭op → 𝐂𝐋𝐚𝐭∧ via the Grothendieck
construction (see e.g. [19, Definition 1.10.1]), where the codomain is the category of complete
lattices and meet-preserving functions between them. We call such fibrations 𝐂𝐋𝐚𝐭∧-fibrations
over 𝐒𝐞𝐭 (see also [3, Section 4.3]), or simply 𝐂𝐋𝐚𝐭∧-fibrations. This is a restricted class of
topological functors to 𝐒𝐞𝐭 [18], where each fiber category is a poset.

The necessary components to define coinductive invariants can be found in any combination
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of a 𝐂𝐋𝐚𝐭∧-fibration 𝜋 with an endolifting �̇� of an endofunctor 𝐹 on 𝐒𝐞𝐭, depicted as

𝔼 �̇� //

𝜋
��

𝔼
𝜋
��

𝐒𝐞𝐭
𝐹

// 𝐒𝐞𝐭

(1)

This terminology is intended to echo [15].
Definition 3.5. In the situation (1), an �̇� -invariant [on an𝐹 -coalgebra (𝐼, 𝑓 )] is an �̇� -coalgebra
(𝑋, 𝛼) [such that 𝜋𝑋 = 𝐼 and 𝜋𝛼 = 𝑓 ]. An �̇� -invariant morphism is an �̇� -coalgebra morphism.

An equivalent definition of an �̇� -invariant can be derived from the fibrational structure of
𝜋. For each coalgebra (𝐼, 𝑓 ), there is a monotone function

𝔼𝐼
�̇� |𝐼 // 𝔼𝐹𝐼

𝑓 ∗
// 𝔼𝐼 .

An �̇� -invariant on (𝐼, 𝑓 ) is precisely a postfixed point for this function, meaning there is a
morphism 𝑋 → 𝑓 ∗�̇� |𝐼𝑋 over id𝐼 .
Definition 3.6. Consider the situation (1). The greatest �̇� -invariant on an 𝐹 -coalgebra (𝐼, 𝑓 )
always exists, is called the �̇� -coinductive invariant, and is denoted by 𝜈�̇�(𝐼,𝑓 ).

We can alternatively reach 𝜈�̇�(𝐼,𝑓 ) by the final sequence argument inside the fiber 𝔼𝐼 ; this is
the approach taken in [5].

In particular fibrations, coinductive invariants are often known by more specific names.
For example, in 𝐄𝐑𝐞𝐥, the coinductive invariant created by the canonical relation lifting (see
Definition 5.1) is bisimilarity (see e.g. [7]). In 𝐏𝐌𝐞𝐭𝑏, the coinductive invariant created by a
lifting is known as the behavioural metric on that coalgebra [5, 9].

�̇� -invariants and �̇� -invariant morphisms together form a category, in fact exactly the cate-
gory 𝐂𝐨𝐚𝐥𝐠(�̇� ). �̇� -invariants also evidently sit over 𝐹 -coalgebras according to 𝜋, so we name
the functor sending 𝐂𝐨𝐚𝐥𝐠(�̇� ) to 𝐂𝐨𝐚𝐥𝐠(𝐹 ).
Definition 3.7. In the situation (1), the underlying coalgebra functor 𝐂𝐨𝐚𝐥𝐠(𝜋) ∶ 𝐂𝐨𝐚𝐥𝐠(�̇� ) →
𝐂𝐨𝐚𝐥𝐠(𝐹 ) is defined as

𝐂𝐨𝐚𝐥𝐠(𝜋)(𝑋, 𝛼) ≜ (𝜋𝑋, 𝜋𝛼), 𝐂𝐨𝐚𝐥𝐠(𝜋)(ℎ) ≜ 𝜋ℎ.

4 Further Background

In this section, we recall some more advanced terms and facts from the theory of fibered cate-
gories which we will use to construct families of endoliftings for endofunctors in fibrations. We
also discuss some properties of 𝐂𝐋𝐚𝐭∧-fibrations, particularly a canonical symmetric monoidal
closed structure.
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4.1 Further Details on Fibered Category Theory

A functor 𝜋 ∶ 𝔼 → 𝔹 is a opfibration if 𝜋op ∶ 𝔼op → 𝔹op is a fibration, and a bifibration if 𝜋
and 𝜋op are fibrations. For an opfibration 𝜋, the pullback operation of 𝜋op is denoted by 𝑓∗ and
called pushforward. In a bifibration, the pullback 𝑓 ∗ is right adjoint to the pushforward 𝑓∗ [19,
Lemma 9.1.2].

A convenient way to create fibrations is to form pullbacks of fibrations. This operation is
called change-of-base of fibrations, which we describe below. Let 𝜋 ∶ 𝔼 → 𝔹 be a fibration,
and 𝐹 ∶ ℂ → 𝔹 be a functor. We take the pullback of 𝜋 along 𝐹 in 𝐂𝐀𝐓:

𝐹 ∗𝔼 //

𝐹 ∗𝜋
��

𝔼
𝜋
��

ℂ
𝐹

// 𝔹

The category 𝐹 ∗𝔼 at the top-left corner of the pullback is given as follows:
• An object is a pair (𝐼,𝑋) of objects 𝐼 ∈ ℂ and 𝑋 ∈ 𝔼 above 𝐹𝐼 .
• A morphism from (𝐼,𝑋) to (𝐽 , 𝑌 ) is a pair (𝑓, ̇𝑓 ) of morphisms 𝑓 ∶ 𝐼 → 𝐽 and ̇𝑓 ∶

𝑋 → 𝑌 such that ̇𝑓 is above 𝐹𝑓 .
The evident projection functor 𝐹 ∗𝜋 ∶ 𝐹 ∗𝔼 → ℂ is again a fibration and is called the change-
of-base of 𝜋 along 𝐹 . If 𝜋 is a partial order fibration, then so is 𝐹 ∗𝜋.

A common scenario encountered in the study of fibrations is when each fiber 𝔼𝐼 has a cat-
egorical structure, say  , and pullback functors preserve these fiberwise structures. When this
is the case, we say that the fibration has fibered  . For instance, a fibration 𝜋 ∶ 𝔼 → 𝔹 has
fibered final objects if 1) each fiber 𝔼𝐼 has a final object, and 2) for any morphism 𝑓 ∶ 𝐼 → 𝐽 ,
the pullback functor 𝑓 ∗ ∶ 𝔼𝐽 → 𝔼𝐼 preserves final objects. The fiberwise structure and the
structure on the total category often have a close relationship. We state it next for the case of
fibered limits.
Theorem 4.1 (Jacobs, [19]). Let 𝜋 ∶ 𝔼 → 𝔹 be a fibration and 𝔻 be a category. If 𝔹 has limits
of shape 𝔻, and 𝜋 has fibered limits of shape 𝔻, then 𝔼 also has limits of shape 𝔻.

The dual version of this theorem also holds, replacing the fibration with an opfibration, limits
with colimits and pullbacks with pushforwards.

We also mention the preservation of fibrations by the functor-category construction:
Theorem 4.2. For any (resp. partial order) fibration 𝜋 ∶ 𝔼 → 𝔹 and category ℂ, the postcom-
position functor 𝜋◦− ∶ [ℂ,𝔼] → [ℂ,𝔹] is also a (resp. partial order) fibration.
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Proof. Consider the following situation:

𝛼∗�̇� 𝛼�̇� // �̇� [ℂ,𝔼]
𝜋◦−
��

𝐹 𝛼
// 𝐺 [ℂ,𝔹]

We define the pullback 𝛼∗�̇� and the cartesian lifting 𝛼�̇� by

(𝛼∗�̇�)𝐶 ≜ (𝛼𝐶)∗(�̇�𝐶), (𝛼�̇�)𝐶 ≜ 𝛼𝐶(�̇�𝐶).

It is routine to check that this yields a cartesian lifting.
Let 𝜋 ∶ 𝔼 → ℂ and 𝜌 ∶ 𝔽 → 𝔻 be fibrations. A fibration map from 𝜋 to 𝜌 is a pair of functors

𝐻 ∶ ℂ → 𝔻 and �̇� ∶ 𝔼 → 𝔽 such that 𝐻◦𝜋 = 𝜌◦�̇� , and �̇� sends cartesian morphisms in 𝔼
to cartesian morphisms in 𝔽 . When ℂ = 𝔻, we also say that a functor �̇� ∶ 𝔼 → 𝔽 is a fibration
map from 𝜋 to 𝜌 if (Idℂ, �̇�) is so. Here we relate the facts of being a right adjoint and preserving
fibered meets for a fibration map between 𝐂𝐋𝐚𝐭∧-fibrations.
Theorem 4.3. Let 𝜋 ∶ 𝔼 → 𝐒𝐞𝐭 and 𝜌 ∶ 𝔽 → 𝐒𝐞𝐭 be 𝐂𝐋𝐚𝐭∧-fibrations and 𝐻 be a fibration
map from 𝜋 to 𝜌. Then the following are equivalent:

1. 𝐻 preserves fibered meets, that is, for all 𝐼 ∈ 𝐒𝐞𝐭, 𝐻|𝐼 ∶ 𝔼𝐼 → 𝔽𝐼 preserves all meets.

2. 𝐻 has a left adjoint 𝐺 ∶ 𝔽 → 𝔼 such that 𝜋◦𝐺 = 𝜌, and the unit and counit of the
adjunction are above identity morphisms.

Proof. In this proof, the (unique) 𝔼-morphism corresponding to the inequality 𝑋 ≤ 𝑌 in the
fiber 𝔼𝐼 is denoted by ⌈𝑋 ≤ 𝑌 ⌉.

(1 ⟹ 2) Let 𝑋 ∈ 𝔽 , 𝑌 ∈ 𝔼 be objects and define 𝐼 ≜ 𝜌𝑋, 𝐽 ≜ 𝜋𝑌 . Since the restriction
𝐻|𝐼 ∶ 𝔼𝐼 → 𝔽𝐼 of 𝐻 onto the fibers above 𝐼 ∈ 𝐒𝐞𝐭 preserves all meets, and since those fibers
are complete lattices, the left adjoint 𝐺𝐼 of 𝐻|𝐼 exists. We define 𝜂𝑋 ≜ ⌈𝑋 ≤ 𝐻𝐺𝐼𝑋⌉, and
show that (𝐺𝐼𝑋, 𝜂𝑋) is a universal arrow from 𝑋 to 𝐻 . Let ̇𝑓 ∶ 𝑋 → 𝐻𝑌 be an 𝔽 -morphism
and define 𝑓 ≜ 𝜌 ̇𝑓 . Then we obtain the factorization

̇𝑓 = 𝑓 (𝐻𝑌 )◦⌈𝑋 ≤ 𝑓 ∗(𝐻𝑌 )⌉ = 𝐻(𝑓 (𝑌 ))◦⌈𝑋 ≤ 𝐻(𝑓 ∗𝑌 )⌉;

here we use the fact that 𝐻 preserves cartesian morphisms. Next, 𝑋 ≤ 𝐻(𝑓 ∗𝑌 ) implies 𝐺𝐼𝑋 ≤
𝑓 ∗𝑌 . Therefore we define the adjoint mate of ̇𝑓 by ̇𝑓 ≜ 𝑓 (𝑌 )◦⌈𝐺𝐼𝑋 ≤ 𝑓 ∗𝑌 ⌉, which is above
𝑓 . Then

𝐻 ̇𝑓◦𝜂𝑋 = 𝐻(𝑓 (𝑌 ))◦𝐻⌈𝐺𝐼𝑋 ≤ 𝑓 ∗𝑌 ⌉◦⌈𝑋 ≤ 𝐻𝐺𝐼𝑋⌉ = ̇𝑓 .

Let �̇� be an 𝔼-morphism such that 𝐻�̇�◦𝜂𝑋 = ̇𝑓 Then 𝜋�̇� = 𝑓 because 𝑓 = 𝜌 ̇𝑓 = 𝜌𝐻�̇�◦𝜌𝜂𝑋 =
𝜋�̇�. From faithfulness of 𝜋, we conclude �̇� = ̇𝑓 .
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Thus the object part of the left adjoint of 𝐻 is 𝑋 ↦ 𝐺𝜌𝑋𝑋. This proof shows that the
bijective correspondence 𝔽 (𝑋,𝐻𝑌 ) ≅ 𝔼(𝐺𝑋, 𝑌 ) restricts to 𝔽𝑓 (𝑋,𝐻𝑌 ) ≅ 𝔼𝑓 (𝐺𝑋, 𝑌 ) for any
𝑓 ∶ 𝐼 → 𝐽 . This implies that the unit and counit of 𝐺 ⊣ 𝐻 is above identity. 𝜋◦𝐺 = 𝜌 is easy.

(2 ⟹ 1) Suppose that 𝐻 has a left adjoint 𝐺 ∶ 𝔽 → 𝔼 such that 𝜋◦𝐺 = 𝜌, and
the unit 𝜂 and counit 𝜖 of the adjunction are above identity morphisms. Then the bijective
correspondence 𝔼(𝐺𝑋, 𝑌 ) ≅ 𝔽 (𝑋,𝐻𝑌 ) can be restricted to 𝔼𝑓 (𝐺𝑋, 𝑌 ) ≅ 𝔽𝑓 (𝑋,𝐻𝑌 ) for any
function 𝑓 ∈ 𝜌𝑋 → 𝜋𝑌 in 𝐒𝐞𝐭. This particularly implies 𝐺𝐼𝑋 ≤ 𝑌 ⟺ 𝑋 ≤ 𝐻𝐼𝑌 for each
𝐼 ∈ 𝐒𝐞𝐭, establishing an adjunction between 𝔼𝐼 and 𝔽𝐼 . Hence 𝐻 preserves all meets.

4.2 Properties of 𝐂𝐋𝐚𝐭∧-Fibrations

We have already described the class of 𝐂𝐋𝐚𝐭∧-fibrations (see Section 3.4). All of the fibrations
we mentioned in Example 2.1 are indeed 𝐂𝐋𝐚𝐭∧-fibrations, and there are many more examples.
Example 4.1. The forgetful functors from the following categories to 𝐒𝐞𝐭 are 𝐂𝐋𝐚𝐭∧-fibrations:

• For a commutative unital quantale 𝑄, 𝑄-𝐏𝐫𝐞𝐝 is the category of 𝑄-valued predicates.
Objects in this category are functions to 𝑄, and morphisms from 𝑖 ∶ 𝐼 → 𝑄 to 𝑗 ∶ 𝐽 → 𝑄
are functions ℎ ∶ 𝐼 → 𝐽 such that 𝑖(𝑥) ≤ 𝑗(ℎ(𝑥)) holds (in 𝑄) for any 𝑥 ∈ 𝐼 . This
category appears in the study of up-to techniques in fibrational setting [6, Definition 7
and 8]. The forgetful functor maps 𝑖 to its domain.

• 𝐏𝐌𝐞𝐭𝑏 is the full subcategory of 𝐁𝐕𝐚𝐥 consisting of 𝑏-bounded pseudometric spaces, for
a fixed bound 𝑏 ∈ (0,∞]. A 𝑏-bounded pseudometric on a set 𝐼 is a function 𝑟 ∶ 𝐼 × 𝐼 →

[0, 𝑏] which satisfies the axioms of a pseudometric:

1. 𝑟(𝑖, 𝑖) = 0,

2. 𝑟(𝑖, 𝑖′) = 𝑟(𝑖′, 𝑖), and

3. 𝑟(𝑖, 𝑖′′) ≤ 𝑟(𝑖, 𝑖′) + 𝑟(𝑖′, 𝑖′′) for all 𝑖, 𝑖′, 𝑖′′ ∈ 𝐼 .

A pseudometric drops only the definiteness condition of a metric, so 𝑟(𝑖, 𝑖′) = 0 does
not imply 𝑖 = 𝑖′. This is crucial for our intended application to coalgebras where distinct
states may have identical behaviours and we wish the distance between two states to reflect
the difference in their behaviours only. The forgetful functor sends a pseudometric space
to its underlying set.

• For a commutative unital quantale 𝑄 regarded as a cocomplete symmetric monoidal
closed category, 𝑄-𝐂𝐚𝐭 is the category of small 𝑄-enriched categories and 𝑄-enriched
functors between them. The forgetful functor extracts the set of objects from small 𝑄-
enriched categories. This category is used in [4] as a generalization of metric spaces.
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Despite their simple definition, 𝐂𝐋𝐚𝐭∧-fibrations have many useful properties. Let 𝜋 ∶ 𝔼 →

𝐒𝐞𝐭 be a 𝐂𝐋𝐚𝐭∧-fibration. The following properties are well-known:
• 𝜋 is a split bifibration. (Each fiber is a poset and each pullback functor 𝑓 ∗ ∶ 𝔼𝐽 → 𝔼𝐼 has

a left adjoint 𝑓∗ ∶ 𝔼𝐼 → 𝔼𝐽 by the adjoint functor theorem.)
• 𝜋 is faithful and has the left adjoint Δ ∶ 𝐒𝐞𝐭 → 𝔼 mapping 𝐼 ∈ 𝐒𝐞𝐭 to the least element

in 𝔼𝐼 . The unit of this adjunction is the identity morphism. Typically, Δ𝐼 corresponds to
the discrete structure on 𝐼 . For instance, Δ𝐼 in 𝐓𝐨𝐩 is the discrete space over 𝐼 , in 𝐏𝐫𝐞
it is the diagonal relation over 𝐼 , and in 𝐏𝐌𝐞𝐭1 it is the discrete pseudometric over 𝐼 .

• 𝔼 has small limits and colimits that are strictly preserved by 𝜋, due to Theorem 4.1. 2

• 𝜋 uniquely lifts arbitrary limits and colimits that exist in 𝐒𝐞𝐭, including large ones [1,
Proposition 13.15 and Proposition 21.15]. We describe this for the case of colimits. For
any diagram 𝐹 ∶ 𝔻 → 𝔼 and a colimiting cocone {𝜄𝐷 ∶ 𝜋𝐹𝐷 → 𝐶}𝐷∈𝔻 of 𝜋𝐹 in 𝐒𝐞𝐭,
there exists a unique colimiting cocone {�̇�𝐷 ∶ 𝐹𝐷 → �̇�}𝐷∈𝔻 of 𝐹 in 𝔼 such that 𝜋�̇�𝐷 = 𝜄𝐷.
The colimit �̇� is given as ⋁𝐷∈|𝔻|(𝜄𝐷)∗(𝐹𝐷). The same statement holds for coends instead
of colimits.

• The change-of-base of a 𝐂𝐋𝐚𝐭∧-fibration 𝜋 ∶ 𝔼 → 𝐒𝐞𝐭 along any functor 𝐹 ∶ 𝐒𝐞𝐭 → 𝐒𝐞𝐭
is again a 𝐂𝐋𝐚𝐭∧-fibration over 𝐒𝐞𝐭.

Another less known, but important fact is that the total category 𝔼 of any 𝐂𝐋𝐚𝐭∧-fibration
over 𝐒𝐞𝐭 carries a canonical symmetric monoidal closed (SMC for short) structure. The SMC
structure on 𝐓𝐨𝐩 is described in [8, 30]. The following construction of the SMC structure is a
reformulation of the one given in [23] using fibered category theory.
The tensor unit is Δ1.
The tensor product of 𝑋, 𝑌 ∈ 𝔼 is constructed as follows. Let us define 𝜋𝑋 ⋅ 𝑌 to be the

coproduct of 𝜋𝑋-many copies of 𝑌 . We explicitly construct it above 𝜋𝑋 × 𝜋𝑌 by

𝜋𝑋 ⋅ 𝑌 =
⋁

𝑥∈𝜋𝑋
(𝑥,−)∗𝑌 ,

where (𝑥,−) ∶ 𝜋𝑌 → 𝜋𝑋 × 𝜋𝑌 is the function that pairs an argument with a specified
𝑥 ∈ 𝜋𝑋. We symmetrically define 𝑋 ⋅ 𝜋𝑌 to be the coproduct of 𝜋𝑌 -many copies of 𝑋,
again constructed above 𝜋𝑋 × 𝜋𝑌 . We then define the tensor product of 𝑋 and 𝑌 to be
the join of these two in the fiber over 𝜋𝑋 × 𝜋𝑌 :

𝑋 ⊗ 𝑌 = (𝜋𝑋 ⋅ 𝑌 ) ∨ (𝑋 ⋅ 𝜋𝑌 ). (2)
2In general 𝔼 may not be a distributive category, that is, 𝑋 × (−) may not preserve coproducts. An example

𝐂𝐋𝐚𝐭∧-fibration is the projection functor 𝜋2 ∶ 𝐿 × 𝐒𝐞𝐭 → 𝐒𝐞𝐭 where 𝐿 is a non-distributive complete lattice.
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This tensor product classifies bi-𝔼-morphisms in the following sense: for all objects
𝑋, 𝑌 ,𝑍 ∈ 𝔼 and 𝑓 ∶ 𝜋𝑋 × 𝜋𝑌 → 𝜋𝑍, the morphism 𝑓 satisfies 𝑓 ∶ 𝑋 ⊗ 𝑌 →̇ 𝑍
if and only if 𝑓 (𝑥,−) ∶ 𝑌 →̇𝑍 and 𝑓 (−, 𝑦) ∶ 𝑋 →̇𝑍 holds for any 𝑥 ∈ 𝜋𝑋 and 𝑦 ∈ 𝜋𝑌 .
The proof is the following:

𝑓 ∶ 𝑋 ⊗ 𝑌 →̇𝑍

⟺ (𝑓 ∶ 𝜋𝑋 ⋅ 𝑌 →̇𝑍) and (𝑓 ∶ 𝑋 ⋅ 𝜋𝑌 →̇𝑍)

⟺ (∀𝑥 ∈ 𝜋𝑋 . 𝑓 (𝑥,−) ∶ 𝑌 →̇𝑍) and (∀𝑦 ∈ 𝜋𝑌 . 𝑓 (−, 𝑦) ∶ 𝑋 →̇𝑍).

The closed structure of 𝑋, 𝑌 ∈ 𝔼 is constructed as follows. We first construct the product
𝜋𝑋 ⋔ 𝑌 of 𝜋𝑋-many copies of 𝑌 above 𝐒𝐞𝐭(𝜋𝑋, 𝜋𝑌 ) by

𝜋𝑋 ⋔ 𝑌 =
⋀

𝑥∈𝜋𝑋
(−(𝑥))∗𝑌 ,

where −(𝑥) ∶ 𝐒𝐞𝐭(𝜋𝑋, 𝜋𝑌 ) → 𝜋𝑌 is the function that evaluates an argument function
with a specified 𝑥 ∈ 𝜋𝑋. We then define the closed structure 𝑋 ⊸ 𝑌 to be the pullback
of 𝜋𝑋 ⋔ 𝑌 along the morphism mapping 𝜋𝑋,𝑌 ∶ 𝔼(𝑋, 𝑌 ) → 𝐒𝐞𝐭(𝜋𝑋, 𝜋𝑌 ) of 𝜋:

𝑋 ⊸ 𝑌 = 𝜋∗
𝑋,𝑌 (𝜋𝑋 ⋔ 𝑌 ). (3)

Proposition 4.1. The functor 𝜋 ∶ 𝔼 → 𝐒𝐞𝐭 and its left adjoint Δ ∶ 𝐒𝐞𝐭 → 𝔼 are strict symmetric
monoidal (for 𝐒𝐞𝐭 we take the cartesian monoidal structure).

Proof. That 𝜋 being strict symmetric monoidal is immediate. To show that Δ is so, we first
check 𝐼 ⋅ Δ𝐽 = Δ(𝐼 × 𝐽 ) for any 𝐼, 𝐽 ∈ 𝐒𝐞𝐭:

𝔼(𝐼 ⋅ Δ𝐽 ,−) ≅ 𝐒𝐞𝐭(𝐼,𝔼(Δ𝐽 ,−)) ≅ 𝐒𝐞𝐭(𝐼,𝐒𝐞𝐭(𝐽 , 𝜋−)) ≅ 𝐒𝐞𝐭(𝐼 × 𝐽 , 𝜋−) ≅ 𝔼(Δ(𝐼 × 𝐽 ),−).

We thus conclude 𝐼 ⋅ Δ𝐽 = Δ(𝐼 × 𝐽 ). By a symmetrical argument, Δ𝐼 ⋅ 𝐽 = Δ(𝐼 × 𝐽 ) also
holds. Therefore Δ𝐼 ⊗ Δ𝐽 = (𝐼 ⋅ Δ𝐽 ) ∨ (Δ𝐼 ⋅ 𝐽 ) = Δ(𝐼 × 𝐽 ). That Δ maps 1 ∈ 𝐒𝐞𝐭 to the
tensor unit is trivial.
Example 4.2. We illustrate the bifibrational structure of 𝐁𝐕𝐚𝐥. Let us first recall the order
relation in its fibers. For any 𝐼 ∈ 𝐒𝐞𝐭 and (𝐼, 𝑟), (𝐼, 𝑠) ∈ 𝐁𝐕𝐚𝐥𝐼 , the following are equivalent:

1. (𝐼, 𝑟) ≤ (𝐼, 𝑠) holds in 𝐁𝐕𝐚𝐥𝐼 ,

2. id𝐼 is a nonexpansive function from (𝐼, 𝑟) to (𝐼, 𝑠), and

3. 𝑠(𝑥, 𝑦) ≤ 𝑟(𝑥, 𝑦) holds for all 𝑥, 𝑦 ∈ 𝐼 .
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Note the apparent disparity between 1 and 3: though (𝐼, 𝑟) ≤ (𝐼, 𝑠) in the fiber order, 𝑠 has
smaller values than 𝑟 pointwise. As a consequence, the meet in the fiber is computed by the
pointwise numerical sup:

⋀

𝑖∈𝜆(𝐼, 𝑟𝑖) = (𝐼, 𝑟′) where 𝑟′(𝑥, 𝑦) = sup𝑖∈𝜆 𝑟𝑖(𝑥, 𝑦).

Next, let (𝐼, 𝑟) ∈ 𝐁𝐕𝐚𝐥 and 𝐻 𝑓 // 𝐼 𝑔 // 𝐽 be functions. The pullback 𝑔∗(𝐼, 𝑟) ≜ (𝐻, 𝑞) and
the pushforward 𝑓∗(𝐼, 𝑠) ≜ (𝐽 , 𝑠) are given by

𝑞(𝑥, 𝑦) = 𝑟(𝑓 (𝑥), 𝑓 (𝑦)), 𝑠(𝑥, 𝑦) = inf
𝑔(𝑝)=𝑥
𝑔(𝑞)=𝑦

𝑟(𝑝, 𝑞).

The fibrational construction of the canonical SMC structure on 𝐁𝐕𝐚𝐥 yields the following tensor
product and closed structure:

(𝐼, 𝑟)⊗ (𝐽 , 𝑠) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐼 × 𝐽 , 𝜆((𝑥, 𝑦), (𝑥′, 𝑦′)) .

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∞ 𝑥 ≠ 𝑥′ and 𝑦 ≠ 𝑦′

𝑠(𝑦, 𝑦′) 𝑥 = 𝑥′ and 𝑦 ≠ 𝑦′

𝑟(𝑥, 𝑥′) 𝑥 ≠ 𝑥′ and 𝑦 = 𝑦′

min(𝑟(𝑥, 𝑥′), 𝑠(𝑦, 𝑦′)) 𝑥 = 𝑥′ and 𝑦 = 𝑦′

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(𝐼, 𝑟) ⊸ (𝐽 , 𝑠) =
(

𝐁𝐕𝐚𝐥((𝐼, 𝑟), (𝐽 , 𝑠)), 𝜆(𝑓, 𝑓 ′) . sup
𝑥∈𝐼

𝑠(𝜋𝑓 (𝑥), 𝜋𝑓 ′(𝑥))
)

Example 4.3. We look at the fibrational structure of 𝑄-𝐂𝐚𝐭 for a commutative unital quantale
(𝑄,≤, 1, ⋅). In this example, 𝜋 is a shorthand of the functor 𝜋𝑄-𝐂𝐚𝐭 ∶ 𝑄-𝐂𝐚𝐭 → 𝐒𝐞𝐭 extracting
the set of objects of small 𝑄-enriched categories (Example 4.1). The pullback of 𝑋 ∈ 𝑄-𝐂𝐚𝐭
along a function 𝑓 ∶ 𝐼 → 𝜋𝑋 is defined to be the 𝑄-enriched category 𝑓 ∗𝑋 whose set of
objects is 𝐼 , and whose hom-objects are defined by 𝑓 ∗𝑋(𝑖, 𝑖′) = 𝑋(𝑓𝑖, 𝑓 𝑖′). The fibered meets
of 𝑋𝑖 ∈ 𝑄-𝐂𝐚𝐭𝐼 for a set 𝐼 is the 𝑄-enriched category

⋀

𝑋𝑖 whose set of objects is 𝐼 and whose
hom-objects are given by (

⋀

𝑋𝑖)(𝑥, 𝑦) =
⋀

𝑋𝑖(𝑥, 𝑦). From these data, 𝜋 ∶ 𝑄-𝐂𝐚𝐭 → 𝐒𝐞𝐭 is a
𝐂𝐋𝐚𝐭∧-fibration.

We next derive the SMC structure on 𝑄-𝐂𝐚𝐭 using (2) and (3). We first compute the closed
structure. Following the equation (3), the set of objects of 𝑋 ⊸ 𝑌 is 𝑄-𝐂𝐚𝐭(𝑋, 𝑌 ), and its
hom-objects are given by

(𝑋 ⊸ 𝑌 )(𝑓, 𝑔) =
⋀

𝑥∈𝜋𝑋
𝑌 (𝑓 (𝑥), 𝑔(𝑥)).

This is the same as the 𝑄-enriched category [𝑋, 𝑌 ] of 𝑄-enriched functors given in [4, Section
2.3 Equation (2.8)]. We next define the tensor product 𝑋 ⊗ 𝑌 to be the 𝑄-enriched category
whose set of objects is 𝜋𝑋 × 𝜋𝑌 , and whose hom-objects are given by

𝑋 ⊗ 𝑌 ((𝑥, 𝑦), (𝑥′, 𝑦′)) = 𝑋(𝑥, 𝑥′) ⋅ 𝑌 (𝑦, 𝑦′).

This tensor product also appears in [4, Section 2.3]. We can easily check that this 𝑄-enriched
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category classifies bi-𝑄-enriched functors, hence coincides with the one given as (2). To sum-
marize, the SMC structure on 𝑄-𝐂𝐚𝐭 derived from the 𝐂𝐋𝐚𝐭∧-fibration 𝜋𝑄-𝐂𝐚𝐭 ∶ 𝑄-𝐂𝐚𝐭 → 𝐒𝐞𝐭
coincides with the one presented in [4, Section 2.3].

4.3 Liftings in 𝐂𝐋𝐚𝐭∧-Fibrations

Here we again consider the situation (1), depicted as

𝔼 �̇� //

𝜋
��

𝔼
𝜋
��

𝐒𝐞𝐭
𝐹

// 𝐒𝐞𝐭

�̇� -coinductive invariants give final objects within each fiber category, but there is no assurance
a final object exists in the total category, nor that final objects are preserved by coalgebra mor-
phisms. The next result, which reorganizes results presented in [15, Section 4], sets out some
conditions when these hold.
Theorem 4.4. Consider the situation (1). If (𝐹 , �̇� ) is a fibration map,

1. [15, Proposition 4.1] The underlying coalgebra functor𝐂𝐨𝐚𝐥𝐠(𝜋) ∶ 𝐂𝐨𝐚𝐥𝐠(�̇� ) → 𝐂𝐨𝐚𝐥𝐠(𝐹 )
is a fibration where pullbacks are the same as in the fibration 𝜋.

2. Each pullback functor of 𝐂𝐨𝐚𝐥𝐠(𝜋) preserves final objects (hence 𝐂𝐨𝐚𝐥𝐠(�̇� ) has fibered
final objects).

3. If additionally 𝐂𝐨𝐚𝐥𝐠(𝐹 ) has a final object 𝜈𝐹 , then 𝐂𝐨𝐚𝐥𝐠(�̇� ) has a final object.

Proof. 1. Let (𝐼, 𝑓 ) and (𝐽 , 𝑔) be 𝐹 -coalgebras, 𝜑 ∶ (𝐼, 𝑓 ) → (𝐽 , 𝑔) be an 𝐹 -coalgebra
morphism, and (𝑌 , �̇�) be an �̇� -coalgebra above (𝐽 , 𝑔). Since 𝜋 is a fibration, the function
𝜑 ∶ 𝐼 → 𝐽 and the 𝔼-object 𝑌 yield a 𝜋-cartesian morphism 𝜑(𝑌 ) ∶ 𝜑∗𝑌 → 𝑌 above
𝜑 ∶ 𝐼 → 𝐽 . We will find an �̇� -coalgebra structure on 𝜑∗𝑌 making 𝜑(𝑌 ) a 𝐂𝐨𝐚𝐥𝐠(𝜋)-
cartesian morphism.
Since �̇� preserves cartesian morphisms, �̇� (𝜑(𝑌 )) ∶ �̇� (𝜑∗𝑌 ) → �̇� 𝑌 is cartesian above
𝐹𝜑 ∶ 𝐹𝐼 → 𝐹𝐽 . Since 𝐹𝜑◦𝑓 = 𝑔◦𝜑, from the universal property of 𝐹𝜑 we obtain a
mediating morphism 𝑚 ∶ 𝜑∗𝑌 → �̇� (𝜑∗𝑌 ) above 𝑓 , which is the pullback coalgebra of
(𝑌 , �̇�) along 𝜑.

2. Let ℎ ∶ (𝐼, 𝑓 ) → (𝐽 , 𝑔) be an 𝐹 -coalgebra morphism. Then for each 𝑋 ∈ 𝔼𝐽 we have
the following equalities between objects:

ℎ∗(𝑔∗(�̇�𝑋)) = (𝑔◦ℎ)∗�̇�𝑋 = (𝐹ℎ◦𝑓 )∗�̇�𝑋 = 𝑓 ∗((𝐹ℎ)∗(�̇�𝑋)) = 𝑓 ∗(�̇� (ℎ∗𝑋)).

18



This, together with ℎ∗ preserving all meets, implies that ℎ∗ maps the final sequence of
𝑓 ∗◦�̇� to the final sequence of 𝑔∗◦�̇� . Therefore ℎ∗(𝜈(𝑓 ∗◦�̇� )) = 𝜈(𝑔∗◦�̇� ).

3. Immediate from Theorem 4.1. It is given as the final object 𝜈�̇�𝜈𝐹 above the final coalgebra.

For items 2 and 3 of this theorem, see also [15, Corollary 4.3]. This is a fibered counterpart
of some results in Section 6 of [5]. To see this, we instantiate Theorem 4.4 with 𝜋 being the
forgetful functor from 𝐏𝐌𝐞𝐭𝑏, and 𝐹 being an endofunctor on 𝐒𝐞𝐭 having a final 𝐹 -coalgebra
𝜈𝐹 . If (𝐹 , �̇� ) is a fibration map (that is, �̇� preserves isometries), then

• Theorem 6.1 in [5] is equivalent to the conclusion of (this instance of) item 3 of Theorem
4.4.

• Let (𝐼, 𝑓 ) be an𝐹 -coalgebra, and !𝐼 ∶ 𝐼 → 𝜈𝐹 be the unique𝐹 -coalgebra morphism. The
behavioural distance of 𝐼 in [5] corresponds to the pullback !∗𝐼 (𝜈�̇�𝜈𝐹 ) in our fibrational
language.

• Theorem 6.2 in [5] corresponds to 𝜈𝐹𝐼 = !∗𝐼 (𝜈�̇�𝜈𝐹 ), which follows from (this instance of)
item 2 of Theorem 4.4.

5 Constructions of Endoliftings along 𝐂𝐋𝐚𝐭∧-Fibrations

There are many examples of endoliftings of endofunctors in well-known fibrations, such as the
fibration of relations or pseudometrics. Some of these endoliftings even form classes which
cover all functors, such as the canonical relation endolifting [7, 17] or the generalized Kan-
torovich liftings of [5], which ensure every functor has an endolifting in 𝐄𝐑𝐞𝐥 and 𝐏𝐌𝐞𝐭𝑏 re-
spectively. In this section, we generalize various constructions known in particular fibrations to
arbitrary 𝐂𝐋𝐚𝐭∧-fibrations. Throughout this section we let 𝜋 ∶ 𝔼 → 𝐒𝐞𝐭 be a 𝐂𝐋𝐚𝐭∧-fibration.
A summary of the subsequent sections are in order:
Section 5.1 We review the construction of endoliftings of polynomial functors along fibrations,

first studied by Hermida and Jacobs [17]. These endoliftings are often used for defining
bisimulations for deterministic transition systems, such as deterministic finite automata.
The main ingredients of this construction are products and coproducts in 𝔼 that are strictly
preserved by 𝜋 ∶ 𝔼 → 𝐒𝐞𝐭.

Section 5.2 and 5.3 We introduce the pullback and pushforward constructions of endoliftings
along natural transformations; they are not mentioned very often in the literature3. As
demonstrated in the subsequent sections, these constructions yield nontrivial endoliftings.
We illustrate this by constructing the Hausdorff pseudometric as the pushforward of the

3Pullbacks of monad liftings are used in [11, 20, 21].
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lifting of the list polynomial functor along the quotient natural transformation into the
finite powerset functor.

Section 5.4 In [6], Bonchi et al. introduce Wasserstein lifting as a generalization of the Wasser-
stein metric on probability measures; this is a part of their study on fibrational quantitative
up-to techniques. We reformulate their Wasserstein lifting in the general 𝐂𝐋𝐚𝐭∧-fibration
𝜋 using Hermida’s adjunction lifting [16] together with pushforward of liftings.

Section 5.5 In [21], a lifting method of monads called codensity lifting is introduced. In this
paper we give an endofunctor version of the codensity lifting along the 𝐂𝐋𝐚𝐭∧-fibration
𝜋. It includes Baldan et al.’s Kantorovich lifting [5], which further includes Kantorovich
metric, as an instance. A recent work by Komorida et al. [25] points out that the bisimu-
lation relation using codensity lifting has a game-theoretic characterization.

Section 5.6 In [4], Balan et al. gives a construction of endoliftings to the category 𝑄-𝐂𝐚𝐭 of
quantale-enriched small categories through enriched left Kan extension. At first sight,
their construction looks specific to the SMC structure of 𝑄-𝐂𝐚𝐭. In fact, as we pointed
out in Example 4.3, the SMC structure of 𝑄-𝐂𝐚𝐭 is an instance of the SMC structure on
the total category 𝔼 of the 𝐂𝐋𝐚𝐭∧-fibration 𝜋. Leveraging this fact, we give a calculation
of the enriched left Kan extension using the colimit-lifting property of 𝜋.

5.1 Lifting Polynomial Functors

The fundamental class of endofunctors is polynomial functors. We discuss endoliftings of poly-
nomial endofunctors along the 𝐂𝐋𝐚𝐭∧-fibration 𝜋. The material of this section is an adaptation
of the lifting techniques studied by Hermida and Jacobs [17, Section 2] in 𝐂𝐋𝐚𝐭∧-fibrations.
For the systematic treatment of polynomial functors in general categories, we first introduce
a syntactic structure called polynomials in a category ℂ. They form the class 𝐏(ℂ), and are
defined by the following BNF:

𝐏(ℂ) ∋ 𝑃 ∶∶= 𝐶 | Id |
∏

𝑖∈𝐼
𝑃𝑖 |

∐

𝑖∈𝐼
𝑃𝑖 (𝐶 ∈ ℂ, 𝐼 ∈ 𝐒𝐞𝐭)

These are merely syntactic expressions and will be interpreted as endofunctors on ℂ. The prod-
uct and coproduct of two polynomials are denoted by the infix operators ×,+ respectively. We
say that a polynomial 𝑃 is finitary if indexing sets of ∏ and ∐ in 𝑃 are all finite and countable,
respectively. Examples of polynomials include:

• Let 𝐴 ∈ 𝐒𝐞𝐭. Then 𝐴 × Id is a finitary polynomial in 𝐒𝐞𝐭.
• Let (𝐼, 𝑟) ∈ 𝐁𝐕𝐚𝐥 and 𝐴 ∈ 𝐒𝐞𝐭. Then (𝐼, 𝑟) ×

∏

𝑎∈𝐴 Id is a polynomial in 𝐁𝐕𝐚𝐥.
• 𝑃list ≜

∐

𝑖∈ℕ
(
∏

𝑗∈{0,…,𝑖−1} Id
) is a finitary polynomial in any category ℂ.
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We next extend a functor 𝐹 ∶ ℂ → 𝔻 to the function 𝐏(𝐹 ) ∶ 𝐏(ℂ) → 𝐏(𝔻) between classes
of polynomials. It replaces each ℂ-object 𝐶 in a given polynomial in ℂ with 𝐹𝐶 . It is easy to
see that 𝐏(Idℂ) = id𝐏(ℂ) and 𝐏(𝐺)◦𝐏(𝐹 ) = 𝐏(𝐺◦𝐹 ).

Let ℂ be a category with small products and small coproducts. For a polynomial 𝑃 ∈
𝐏(ℂ), we define its interpretation to be an endofunctor on ℂ with the obvious recursion. The
interpretation of a polynomial 𝑃 in ℂ is denoted ℂ[[𝑃 ]]. An endofunctor on ℂ is (finitary)
polynomial if it is an interpretation of a (finitary) polynomial in ℂ. For instance, the polynomial
𝑃list determines the list functor 𝐿 on 𝐒𝐞𝐭:

𝐿𝐼 ≜ 𝐒𝐞𝐭[[𝑃list]](𝐼) = 1 + 𝐼 + 𝐼2 +⋯ .

This syntactic structure allows us to formalize two functors having essentially the same
shape.
Proposition 5.1. Let ℂ and 𝔻 be categories with small products and small coproducts, and
𝐹 ∶ ℂ → 𝔻 be a functor strictly preserving small products and small coproducts. Then we
have 𝐹◦ℂ[[𝑃 ]] = 𝔻[[𝐏(𝐹 )(𝑃 )]]◦𝐹 .

Proof. Easy induction.
Corollary 5.1. For any polynomial 𝑃 in 𝔼, 𝔼[[𝑃 ]] is an endolifting of 𝐒𝐞𝐭[[𝐏(𝜋)(𝑃 )]] along 𝜋.
Especially, for any polynomial 𝑃 in 𝐒𝐞𝐭, 𝔼[[𝐏(Δ)(𝑃 )]] is an endolifting of 𝐒𝐞𝐭[[𝑃 ]].

Proof. Recall that 𝐂𝐋𝐚𝐭∧-fibrations have small products and coproducts that are strictly pre-
served by 𝜋 (Section 4.2). Moreover, for any 𝑃 ∈ 𝐏(𝐒𝐞𝐭), we have 𝑃 = 𝐏(𝜋◦Δ)(𝑃 ) =
𝐏(𝜋)(𝐏(Δ)(𝑃 )).

The canonical relation liftings of Hermida and Jacobs for polynomial endofunctors restrict
the constants available in the polynomials.
Definition 5.1. The canonical relation liftings are the interpretations of polynomials in 𝐄𝐑𝐞𝐥
where the constants are all the diagonal relation: (𝐼,Δ𝐼 ) for some set 𝐼 . In more detail, for a
polynomial 𝑃 in 𝐒𝐞𝐭, we define 𝐑𝐞𝐥(𝑃 ) = 𝐏(𝜄◦Δ𝐏𝐫𝐞)(𝑃 ) where 𝜄 ∶ 𝐏𝐫𝐞 → 𝐄𝐑𝐞𝐥 is the inclusion
of preorders in endorelations. The canonical relation lifting of 𝐒𝐞𝐭[[𝑃 ]] is the interpretation of
the polynomial 𝐑𝐞𝐥(𝑃 ) in 𝐄𝐑𝐞𝐥.

Note that the canonical relation lifting is also commonly defined using an epi-mono factor-
ization in 𝐒𝐞𝐭. For the case of polynomial endofunctors, these definitions coincide, so we use
this definition for convenience.
Example 5.1. We regard 𝑃list as a polynomial in 𝐄𝐑𝐞𝐥, and define 𝐿𝐄𝐑𝐞𝐥 to be the interpretation
of 𝑃list in 𝐄𝐑𝐞𝐥. Then 𝐿𝐄𝐑𝐞𝐥 is an endolifting of 𝐿 along 𝜋𝐄𝐑𝐞𝐥 by Corollary 5.1. For (𝐼, 𝑅) ∈
𝐄𝐑𝐞𝐥, the relation part of𝐿𝐄𝐑𝐞𝐥(𝐼, 𝑅) relates two lists (𝑘1,⋯ , 𝑘𝑚), (𝓁1,⋯ ,𝓁𝑛) ∈ 𝐿𝐼 of arbitrary
length if and only if 𝑚 = 𝑛 (they come from the same index in the coproduct), and (𝑘𝑖,𝓁𝑖) ∈ 𝑅
holds for 0 ≤ 𝑖 < len(𝑘).
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5.2 Pullback and Pushforward of Endoliftings

We consider extending the pullback and pushforward mechanisms of 𝜋 to endoliftings. Let �̇� be
an endolifting of an endofunctor𝐹 on 𝐒𝐞𝐭 along 𝜋, and𝐻 𝛼

←←←←←→ 𝐹
𝛽
←←←←←→ 𝐺 be natural transformations.

We introduce the following pointwise pushforward and pullback in the fibration 𝜋 ∶ 𝔼 → 𝐒𝐞𝐭:

(𝛼∗�̇� )𝑋 ≜ (𝛼𝜋𝑋)∗(�̇�𝑋) (𝛽∗�̇� )𝑋 ≜ (𝛽𝜋𝑋)∗(�̇�𝑋).

They are pullback and pushforward in the following fibration 𝑙𝜋 ∶ 𝐋𝐢𝐟𝐭(𝜋) → [𝐒𝐞𝐭,𝐒𝐞𝐭].
It is the change-of-base of the fibration 𝜋◦− ∶ [𝔼,𝔼] → [𝔼,𝐒𝐞𝐭] (see Theorem 4.2) along
−◦𝜋 ∶ [𝐒𝐞𝐭,𝐒𝐞𝐭] → [𝔼,𝐒𝐞𝐭]:

𝐋𝐢𝐟𝐭(𝜋)
𝑙𝜋
��

// [𝔼,𝔼]
𝜋◦−
��

[𝐒𝐞𝐭,𝐒𝐞𝐭] −◦𝜋
// [𝔼,𝐒𝐞𝐭]

(4)

The category 𝐋𝐢𝐟𝐭(𝜋) at the top-left corner is described as follows: objects are pairs (𝐹 , �̇� )
of an endofunctor 𝐹 on 𝐒𝐞𝐭 and one of its endoliftings �̇� ∶ 𝔼 → 𝔼 along 𝜋. The object
(𝐹 , �̇� ) ∈ 𝐋𝐢𝐟𝐭(𝜋) may simply be denoted by �̇� if 𝐹 is obvious from the context. A morphism
from (𝐹 , �̇� ) to (𝐺, �̇�) is a pair (𝛼, �̇�) of natural transformations 𝛼 ∶ 𝐹 → 𝐺 and �̇� ∶ �̇� → �̇�
such that 𝜋◦�̇� = 𝛼◦𝜋. The fibration 𝑙𝜋 is a partial order bifibration (see Section 4.1). The order
relation of each fiber is given by: (𝐹 , �̇� ) ≤ (𝐹 , 𝐹 ) if and only if for all 𝑋 ∈ 𝔼, �̇�𝑋 ≤ 𝐹𝑋
holds in 𝔼𝐹𝜋𝑋 . We adopt this as the ordering relation on endoliftings of 𝐹 . The pullback and
pushforward of (𝐹 , �̇� ) ∈ 𝐋𝐢𝐟𝐭(𝜋) along 𝐻

𝛼
←←←←←→ 𝐹

𝛽
←←←←←→ 𝐺 are given by 𝛼∗(𝐹 , �̇� ) = (𝐻, 𝛼∗�̇� ) and

𝛽∗(𝐹 , �̇� ) = (𝐺, 𝛽∗�̇� ) respectively.
Definition 5.2. A functor 𝐹 ∶ 𝐒𝐞𝐭 → 𝐒𝐞𝐭 is said to be finitary if there is a finitary polynomial
functor 𝑃 ∶ 𝐒𝐞𝐭 → 𝐒𝐞𝐭 and an epic4 natural transformation 𝛼 ∶ 𝑃 ⇒ 𝐹 . In this case, 𝐹 is
called the quotient of 𝑃 by 𝛼.

Note that a more common definition of “finitary functor” is that the functor preserves filtered
colimits. That the definition above coincides with this more usual one was shown to hold in
locally finitely presentable categories [2].

The advantage of this definition is it makes immediately clear that every finitary endofunctor
on 𝐒𝐞𝐭 has an endolifting in every 𝐂𝐋𝐚𝐭∧-fibration: polynomial functors have endoliftings and
these endoliftings can be pushed forward along the quotienting natural transformations.
Example 5.2. (Continued from the previous Example) The finite powerset functor 𝑃fin is the
quotient of the list functor 𝐿. The quotient map is the natural transformation set𝐼 ∶ 𝐿𝐼 → 𝑃fin𝐼

4Meaning each component 𝛼𝐼 ∶ 𝑃𝐼 → 𝐹𝐼 is an epi in 𝐒𝐞𝐭, or that 𝛼 is an epi in the functor category [𝐒𝐞𝐭,𝐒𝐞𝐭].
MacLane [26] shows these two definitions of “epic natural transformation” are equivalent for transformations be-
tween functors into 𝐒𝐞𝐭.
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given by set𝐼 (𝑖1,… , 𝑖𝑛) = {𝑖1,… , 𝑖𝑛}. The pushforward of 𝐿𝐄𝐑𝐞𝐥 along set yields the endolifting
of 𝑃fin that creates bisimilarity as its coinductive invariant. Explicitly, the pushforward 𝑃 𝐄𝐑𝐞𝐥

fin ≜
set∗(𝐿𝐄𝐑𝐞𝐥) acts on objects as

𝑃 𝐄𝐑𝐞𝐥
fin (𝐼, 𝑅) = (𝑃fin𝐼, {(𝐽 ,𝐾) | (∀𝑗 ∈ 𝐽 . ∃𝑘 ∈ 𝐾 . (𝑗, 𝑘) ∈ 𝑅) and

(∀𝑘 ∈ 𝐾 . ∃𝑗 ∈ 𝐽 . (𝑗, 𝑘) ∈ 𝑅)}).

5.3 The Hausdorff Pseudometric

We next demonstrate a more elaborate example of the Hausdorff pseudometric as an endolifting
of the finite powerset functor 𝑃fin along 𝜋𝐁𝐕𝐚𝐥 ∶ 𝐁𝐕𝐚𝐥 → 𝐒𝐞𝐭.

First, we regard 𝑃list as a polynomial in 𝐁𝐕𝐚𝐥, and let 𝐿𝐁𝐕𝐚𝐥 be its interpretation in 𝐁𝐕𝐚𝐥.
This is an endolifting of the list functor 𝐿 along 𝜋𝐁𝐕𝐚𝐥, and its object part satisfies the following:

𝐿𝐁𝐕𝐚𝐥(𝐼, 𝑑) = (𝐿𝐼, 𝑑∗) where 𝑑∗(𝑘, ℎ) =

{

max
0≤𝑖<len(𝑘)

𝑑(𝑘𝑖, ℎ𝑖) if len(𝑘) = len(ℎ)

∞ if len(𝑘) ≠ len(ℎ)

We then take the pushforward 𝑃 𝐁𝐕𝐚𝐥
fin ≜ set∗(𝐿𝐁𝐕𝐚𝐥) as we have done in Example 5.2. In Exam-

ple 4.2, we found pushforward in 𝐁𝐕𝐚𝐥 explicitly by 𝑃 𝐁𝐕𝐚𝐥
fin (𝐼, 𝑑) = (𝑃fin𝐼,′𝑑) where

′𝑑(𝐾,𝐻) = inf
𝑘∈𝐿𝐼∶ set(𝑘)=𝐾
ℎ∈𝐿𝐼∶ set(ℎ)=𝐻

𝑑∗(𝑘, ℎ) (5)

We have denoted this distance ′𝑑 since it turns out to be equal to the usual Hausdorff distance.
However, this is not the usual formulation for the Hausdorff distance, so we spend the remainder
of this section describing why our formulation is equivalent to the original.

The usual definition of Hausdorff distance for a metric space is

𝑑(𝐾,𝐻) = max
(

sup
𝑦∈𝐾

inf
𝑧∈𝐻

𝑑(𝑦, 𝑧), sup
𝑧∈𝐻

inf
𝑦∈𝐾

𝑑(𝑦, 𝑧)
)

(6)

where 𝐾,𝐻 ⊆ 𝐼 . Typically the Hausdorff distance is also restricted to nonempty compact
subsets of the metric space so that 𝑑 is truly a metric. Since we are not interested in obtaining
a metric, we do not make this requirement on the domain of 𝑑, but we do require that 𝐾 and
𝐻 are finite since we want a 𝐁𝐕𝐚𝐥 object over 𝑃fin𝐼 . The finiteness of 𝐾 and 𝐻 allows us to
change sup and inf above to max and min, respectively.

Notation for lists. We will be working with lists fairly intensively in this section, so we need
to set up some notation. List concatenation will be denoted by ℎ1 ⧺ ℎ2. We assume that finite
sets have been given an arbitrary but fixed ordering. More precisely, we fix a section of set𝐼
which we call list𝐼 ∶ 𝑃fin𝐼 → 𝐿𝐼 . An expression like (𝑓 (𝑘))𝑘∈𝐾 where 𝐾 is a finite set and
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𝑓 ∶ 𝐾 → 𝑋 denotes a list from 𝐿𝑋, namely 𝑓 ∗(list𝐼 (𝐾)). A particular example is (𝑘)𝑘∈𝐾 ,
which is alternative notation for list𝐼 (𝐾).

Lemma 5.1. Suppose𝐾,𝐻 ∈ 𝑃fin𝐼 . Then 𝑑∗
(

(𝑘)𝑘∈𝐾 , (argmin
ℎ∈𝐻

𝑑(𝑘, ℎ))𝑘∈𝐾

)

= sup
𝑦∈𝐾

inf
𝑧∈𝐻

𝑑(𝑦, 𝑧),

and 𝑑∗
(

(argmin
𝑘∈𝐾

𝑑(𝑘, ℎ))ℎ∈𝐻 , (ℎ)ℎ∈𝐻

)

= sup
𝑧∈𝐻

inf
𝑦∈𝐾

𝑑(𝑦, 𝑧).

Proof.

𝑑∗
(

(𝑘)𝑘∈𝐾 , (argmin
ℎ∈𝐻

𝑑(𝑘, ℎ))𝑘∈𝐾

)

= max
𝑘∈𝐾

𝑑(𝑘, argmin
ℎ∈𝐻

𝑑(𝑘, ℎ))

= max
𝑘∈𝐾

min
ℎ∈𝐻

𝑑(𝑘, ℎ)

And similarly for the other claim.
Lemma 5.2. Suppose ℎ1, ℎ2, 𝑘1, 𝑘1 ∈ 𝐿𝐼 satisfy len(ℎ1) = len(𝑘1) and len(ℎ2) = len(𝑘2). Then
𝑑∗(ℎ1 ⧺ ℎ2, 𝑘1 ⧺ 𝑘2) = max(𝑑∗(ℎ1, 𝑘1), 𝑑∗(ℎ2, 𝑘2)).

Given finite sets 𝐾,𝐻 ⊆ 𝐼 , we define 𝑠(𝐾,𝐻) ∈ 𝐿𝐾 to be (𝑘)𝑘∈𝐾 ⧺ (argmin
𝑘∈𝐾

𝑑(𝑘, ℎ))ℎ∈𝐻 ,
and we define 𝑡(𝐾,𝐻) ∈ 𝐿𝐻 to be (argmin

ℎ∈𝐻
𝑑(𝑘, ℎ))𝑘∈𝐾 ⧺ (ℎ)ℎ∈𝐻 . Combining the previous two

lemmas with this definition, we obtain a characterization of the Hausdorff distance.
Proposition 5.2. 𝑑∗(𝑠(𝐾,𝐻), 𝑡(𝐾,𝐻)) = 𝑑(𝐾,𝐻) for all 𝐾,𝐻 ∈ 𝑃fin𝐼 .

Next, we claim that these special lists 𝑠(𝐾,𝐻) and 𝑡(𝐾,𝐻) realize the minimum in′𝑑(𝐾,𝐻).
Proposition 5.3. ′𝑑(𝐾,𝐻) = 𝑑∗(𝑠(𝐾,𝐻), 𝑡(𝐾,𝐻)) for all 𝐾,𝐻 ∈ 𝑃fin𝐼 .

Proof. Since set𝐼 (𝑠(𝐾,𝐻)) = 𝐾 and set𝐼 (𝑡(𝐾,𝐻)) = 𝐻 , the distance 𝑑∗(𝑠(𝐾,𝐻), 𝑡(𝐾,𝐻)) is
greater than or equal to the infimum on the left. Therefore, it suffices to show that 𝑑∗(𝑠(𝐾,𝐻), 𝑡(𝐾,𝐻))
is a lower bound for {𝑑∗(𝑘, ℎ) ∶ set𝐼 (𝑘) = 𝐾 and set𝐼 (ℎ) = 𝐻}.

Suppose for contradiction there are lists 𝑘, ℎ ∈ 𝐿𝐼 such that set𝐼 (𝑘) = 𝐾 , set𝐼 (ℎ) = 𝐻 and
𝑑∗(𝑘, ℎ) < 𝑑∗(𝑠(𝐾,𝐻), 𝑡(𝐾,𝐻)). This inequality immediately implies len(𝑘) = len(ℎ).

Let 𝑖 be the index such that 𝑑∗(𝑠(𝐾,𝐻), 𝑡(𝐾,𝐻)) = 𝑑(𝑠(𝐾,𝐻)𝑖, 𝑡(𝐾,𝐻)𝑖). To be mem-
bers of these lists, there are two possibilities: (A) 𝑠(𝐾,𝐻)𝑖 = argmin

𝑘∈𝐾
𝑑(𝑘, 𝑡(𝐾,𝐻)𝑖) or (B)

𝑡(𝐾,𝐻)𝑖 = argmin
ℎ∈𝐻

𝑑(𝑠(𝐾,𝐻)𝑖, ℎ).
Suppose (A). Then the fact that set𝐼 (ℎ) = 𝐻 means there is an index 𝑗 with 0 ≤ 𝑗 < len(ℎ)

such that ℎ𝑗 = 𝑡(𝐾,𝐻)𝑖. Now we are ready to find our contradiction:

𝑑(𝑘𝑗 , ℎ𝑗) ≤ 𝑑∗(𝑘, ℎ) < 𝑑∗(𝑠(𝐾,𝐻), 𝑡(𝐾,𝐻)) = 𝑑(𝑠(𝐾,𝐻)𝑖, 𝑡(𝐾,𝐻)𝑖)

= 𝑑(argmin
𝑦∈𝐾

𝑑(𝑦, 𝑡(𝐾,𝐻)𝑖), 𝑡(𝐾,𝐻)𝑖) = min
𝑦∈𝐾

𝑑(𝑦, 𝑡(𝐾,𝐻)𝑖) = min
𝑦∈𝐾

𝑑(𝑦, ℎ𝑗).

The argument in case (B) is similar, using set𝐼 (𝑘) = 𝐾 instead.
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Combining the previous two propositions, we obtain the following theorem.
Theorem 5.1. Suppose 𝐾 and 𝐻 are finite subsets of a set 𝐼 , and 𝐼 is equipped with a binary
valuation 𝑑 ∶ 𝐼 × 𝐼 → ℝ+. Then

𝑑(𝐾,𝐻)
(6)
= max

(

sup
𝑦∈𝐾

inf
𝑧∈𝐻

𝑑(𝑦, 𝑧), sup
𝑧∈𝐻

inf
𝑦∈𝐾

𝑑(𝑦, 𝑧)
)

= inf
𝑘∈𝐿𝐼∶ set(𝑘)=𝐾
ℎ∈𝐿𝐼∶ set(ℎ)=𝐻

𝑑∗(𝑘, ℎ)
(5)
= ′𝑑(𝐾,𝐻).

This theorem can also be obtained using the game theoretic interpretation of the two versions
of the Hausdorff distance and the equivalence of two related games. The interested reader can
find a sketch of this alternative proof in the conference version [28].

5.4 Wasserstein Lifting for 𝐂𝐋𝐚𝐭∧-Fibrations

In [6], Bonchi et al. introduced a technique to transfer predicate liftings of endofunctors to their
relational liftings (which they call Wasserstein lifting). In this section, we reformulate their
transfer technique in general 𝐂𝐋𝐚𝐭∧-fibration using Hermida’s adjunction lifting result.

We first sketch their transfer technique. Let 𝑄 be a commutative unital quantale, and con-
sider the forgetful functor 𝜋𝑄-𝐑𝐞𝐥 ∶ 𝑄-𝐑𝐞𝐥 → 𝐒𝐞𝐭 (Example 4.1), which is a 𝐂𝐋𝐚𝐭∧-fibration.
We derive the category of 𝑄-valued endorelations by the following change-of-base (Section
4.1) and name the derived fibration 𝜋𝑄-𝐑𝐞𝐥:

𝑄-𝐑𝐞𝐥
𝜋𝑄-𝐑𝐞𝐥

��

// 𝑄-𝐏𝐫𝐞𝐝
𝜋𝑄-𝐏𝐫𝐞𝐝
��

𝐒𝐞𝐭
(−)2

// 𝐒𝐞𝐭

Let 𝐹 be an endofunctor on 𝐒𝐞𝐭 and �̇� be an endolifting of 𝐹 along 𝜋𝑄-𝐏𝐫𝐞𝐝. The Wasserstein
lifting 𝐹 corresponding to �̇� is defined to be the following endolifting of 𝐹 along 𝜋𝑄-𝐑𝐞𝐥 [6,
Section 5.2]:

𝐹 (𝐼,𝑋) ≜ (𝐹𝐼, ⟨𝐹𝜋1, 𝐹𝜋2⟩∗(�̇�𝑋)); (7)
the right hand side is indeed an object in 𝑄-𝐑𝐞𝐥 because the pushforward is above (𝐹𝐼)2:

�̇�𝑋 //
⟨𝐹𝜋1, 𝐹𝜋2⟩∗(�̇�𝑋) 𝑄-𝐏𝐫𝐞𝐝

𝜋𝑄-𝐏𝐫𝐞𝐝
��

𝐹 (𝐼2)
⟨𝐹𝜋1,𝐹𝜋2⟩

// (𝐹𝐼)2 𝐒𝐞𝐭

We extend the Wasserstein lifting to general 𝐂𝐋𝐚𝐭∧-fibrations. For this, we give a new
formulation of the Wasserstein lifting using Hermida’s adjoint lifting result. We employ the
adjunction (𝐿 ⊣ 𝑅 ∶ 𝐒𝐞𝐭 → 𝐒𝐞𝐭, 𝜂, 𝜖) given by 𝑅𝐼 = 𝐼2 and 𝐿𝐼 = 2 × 𝐼 . Remark that any
endofunctor 𝐹 on 𝐒𝐞𝐭 comes with a natural transformation 𝜃 ∶ 𝐿◦𝐹◦𝑅 → 𝐹 given by the
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adjoint mate of ⟨𝐹𝜋1, 𝐹𝜋2⟩ ∶ 𝐹◦𝑅 → 𝑅◦𝐹 .
Starting from a 𝐂𝐋𝐚𝐭∧-fibration 𝜋 ∶ 𝔼 → 𝐒𝐞𝐭, we derive the fibration of endorelations by

the change-of-base of 𝜋 along 𝑅:

𝐄𝐑𝐞𝐥(𝔼)
𝑟𝜋
��

�̇� // 𝔼
𝜋
��

𝐒𝐞𝐭 𝐒𝐞𝐭
𝐿

oo

⊥ //𝑅

The total category of the resulting fibration 𝑟𝜋 ∶ 𝐄𝐑𝐞𝐥(𝔼) → 𝐒𝐞𝐭 is described as follows:
• An object is a pair (𝐼,𝑋) where 𝑋 ∈ 𝔼𝐼2 .
• A morphism from (𝐼,𝑋) to (𝐽 , 𝑌 ) is a function 𝑓 ∶ 𝐼 → 𝐽 such that 𝑓 2 ∶ 𝑋 →̇ 𝑌 holds

(in the fibration 𝜋).
This category is an analogy of 𝑄-𝐑𝐞𝐥 in [6, Section 4].

The leg �̇� ∶ 𝐄𝐑𝐞𝐥(𝔼) → 𝔼 of the change-of-base has a left adjoint �̇� ∶ 𝔼 → 𝐄𝐑𝐞𝐥(𝔼). Its
object part is given by �̇�𝑋 = (𝐿𝐼, (𝜂𝐼 )∗𝑋), where 𝜂 is the unit of the adjunction 𝐿 ⊣ 𝑅. This
left adjoint is derived from Hermida’s result on lifting of left adjoints by opfibrations; see [16,
Corollary 3.2.5] for details. The adjunction �̇� ⊣ �̇� is a lift of 𝐿 ⊣ 𝑅, that is, 𝜋◦�̇� = 𝑅◦𝑟𝜋 and
𝑟𝜋◦�̇� = 𝐿◦𝜋 hold.

Let 𝐹 be an endofunctor on 𝐒𝐞𝐭 and �̇� be an endolifting of 𝐹 along 𝜋. Then �̇�◦�̇�◦�̇� is an
endolifting of 𝐿◦𝐹◦𝑅 along 𝑟𝜋 . We define 𝑊 (�̇� ), which is now a lifting of 𝐹 along 𝑟𝜋 , to be
the pushforward of �̇�◦�̇�◦�̇� along 𝜃 ∶ 𝐿◦𝐹◦𝑅 → 𝐹 .
Theorem 5.2. For any endofunctor 𝐹 on 𝐒𝐞𝐭 and one of its endoliftings �̇� along 𝜋, we have

𝑊 (�̇� )(𝐼,𝑋) = (𝐹𝐼, ⟨𝐹𝜋1, 𝐹𝜋2⟩∗(�̇�𝑋)).

Proof. Let (𝐼,𝑋) ∈ 𝐄𝐑𝐞𝐥(𝔼). By unfolding the definition, we obtain

𝑊 (�̇� )(𝐼,𝑋) = (𝐹𝐼, (𝑅𝜃𝐼 )∗(𝜂𝐹𝑅𝐼 )∗(�̇�𝑋)).

Recall that 𝜃𝐼 is the adjoint mate of ⟨𝐹𝜋1, 𝐹𝜋2⟩, so 𝜃𝐼 = 𝜖𝐹𝐼◦𝐿⟨𝐹𝜋1, 𝐹𝜋2⟩. Now by the fol-
lowing calculation:

𝑅𝜃𝐼◦𝜂𝐹𝑅𝐼 = 𝑅(𝜖𝐹𝐼◦𝐿⟨𝐹𝜋1, 𝐹𝜋2⟩)◦𝜂𝐹𝑅𝐼 = 𝑅𝜖𝐹𝐼◦𝑅𝐿⟨𝐹𝜋1, 𝐹𝜋2⟩◦𝜂𝐹𝑅𝐼

= 𝑅𝜖𝐹𝐼◦𝜂𝑅𝐹𝐼◦⟨𝐹𝜋1, 𝐹𝜋2⟩ = ⟨𝐹𝜋1, 𝐹𝜋2⟩

we have 𝑊 (�̇� )(𝐼,𝑋) = (𝐹𝐼, ⟨𝐹𝜋1, 𝐹𝜋2⟩∗(�̇�𝑋)).
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5.5 Codensity Lifting of Endofunctors

We next see a lifting method using the fibration 𝜋◦− ∶ [𝔼,𝔼] → [𝔼,𝐒𝐞𝐭] (Theorem 4.2). This
method is a generalization of the codensity lifting of monads [21, Proposition 10] to endofunc-
tors. We demonstrate that it subsumes the Kantorovich lifting in [5]. Coinductive invariants
with respect to codensity liftings have a game-theoretic characterization; see [25] for details.

Let 𝐹 be an endofunctor on 𝐒𝐞𝐭. We take the category 𝐀𝐥𝐠(𝐹 ) of 𝐹 -algebras and the associ-
ated forgetful functor 𝑈 ∶ 𝐀𝐥𝐠(𝐹 ) → 𝐒𝐞𝐭. It comes with a natural transformation 𝛼 ∶ 𝐹◦𝑈 →

𝑈 , whose components are defined by the 𝐹 -algebra structure: 𝛼(𝐴,𝑎) = 𝑎 ∶ 𝐹𝐴 → 𝐴.
The codensity lifting of 𝐹 is defined with respect to a lifting parameter for 𝐹 , which is a

pair (𝑅,𝑆) of functors from a discrete category 𝔸 such that 𝜋◦𝑆 = 𝑈◦𝑅:

𝔸 𝑆 //

𝑅
��

𝔼
𝜋
��

𝐀𝐥𝐠(𝐹 )
𝑈

// 𝐒𝐞𝐭
(8)

Then the codensity lifting 𝐹 [𝑅,𝑆] of 𝐹 with respect to the above lifting parameter (𝑅,𝑆) is
defined by the following fibered meet:

𝐹 [𝑅,𝑆]𝑋 =
⋀

𝐴∈𝔸,𝑓∈𝔼(𝑋,𝑆𝐴)
(𝛼𝑅𝐴◦𝐹𝜋𝑓 )∗(𝑆𝐴).

Example 5.3. Fix a bound 𝑏 ∈ (0,∞] for metrics. We show that the Kantorovich lifting in [5]
is a codensity lifting along the 𝐂𝐋𝐚𝐭∧-fibration 𝜋𝐏𝐌𝐞𝐭𝑏 ∶ 𝐏𝐌𝐞𝐭𝑏 → 𝐒𝐞𝐭.

Let 𝛼 ∶ 𝐹 [0, 𝑏] → [0, 𝑏] be an 𝐹 -algebra (called an evaluation function in [5]). We then
form the following lifting parameter: 𝔸 = 1, 𝑅 = ([0, 𝑏], 𝛼), and 𝑆 = ([0, 𝑏], 𝑑𝑒), where 𝑑𝑒 is
the standard Euclidean distance 𝑑𝑒(𝑥, 𝑦) = |𝑥− 𝑦| on [0, 𝑏]. Then the codensity lifting with this
parameter yields the following construction of pseudometric:

𝐹 [𝑅,𝑆](𝐼, 𝑟) = (𝐹𝐼, 𝑟′)

𝑟′(𝑥, 𝑦) = sup
{

|𝛼((𝐹𝜋𝑓 )(𝑥)) − 𝛼((𝐹𝜋𝑓 )(𝑦))| | 𝑓 ∈ 𝐏𝐌𝐞𝐭𝑏((𝐼, 𝑟), 𝑆)
}

;

note that the above sup corresponds to the meet in the fiber (Example 4.2). This is exactly the
Kantorovich lifting in [5, Definition 3.1].

The codensity lifting can be characterized as a pullback when the codensity monad 𝐑𝐚𝐧𝑆𝑆
exists. Suppose that 𝐑𝐚𝐧𝑆𝑆 exists. Since the 𝐂𝐋𝐚𝐭∧-fibration 𝜋 ∶ 𝔼 → 𝐒𝐞𝐭 preserves all
limits, 𝜋◦𝐑𝐚𝐧𝑆𝑆 is a right Kan extension of 𝜋◦𝑆 along 𝑆. We then take the mate of the natural
transformation 𝛼◦𝑅 ∶ 𝐹◦𝜋◦𝑆 → 𝜋◦𝑆 with the right Kan extension of 𝜋◦𝑆 along 𝑆, and obtain
𝛼◦𝑅 ∶ 𝐹◦𝜋 → 𝜋◦𝐑𝐚𝐧𝑆𝑆.
Theorem 5.3. Suppose that 𝐑𝐚𝐧𝑆𝑆 exists. Then 𝐹 [𝑅,𝑆] is given by the following pullback in the
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fibration [𝔼, 𝑝] ∶ [𝔼,𝔼] → [𝔼,𝐒𝐞𝐭]:

𝐹 [𝑅,𝑆] // 𝐑𝐚𝐧𝑆𝑆 [𝔼,𝔼]
𝜋◦−
��

𝐹◦𝜋
𝛼◦𝑅

// 𝜋◦𝐑𝐚𝐧𝑆𝑆 [𝔼,𝐒𝐞𝐭]

From this characterization of codensity liftings, they have the following universal property.
Let �̇� be an endolifting of 𝐹 along 𝜋 such that 𝛼◦𝑅 ∶ �̇� →̇ 𝐑𝐚𝐧𝑆𝑆 holds in the partial order
fibration 𝑙𝜋 given in (4). This condition is equivalent to 𝛼◦𝑅 ∶ �̇�◦𝑆 →̇ 𝑆, which is again
equivalent to: for any 𝐴 ∈ 𝔸, there is a (unique) �̇� -algebra �̇�𝐴 ∶ �̇� 𝑆𝐴 → 𝑆𝐴 above the
𝐹 -algebra 𝛼𝑅𝐴 ∶ 𝐹𝑈𝑅𝐴 → 𝑈𝑅𝐴. Therefore giving such a lifting is equivalent to lifting the
𝐹 -algebra 𝛼𝑅𝐴 on 𝑈𝑅𝐴 to the �̇� -algebra on 𝑆𝐴. Then the codensity lifting 𝐹 [𝑅,𝑆] is the largest
one among such liftings in the fiber partial order 𝐋𝐢𝐟𝐭(𝜋)𝐹 .

5.6 Lifting by Enriched Left Kan Extensions

Let 𝑄 be a commutative unital quantale, regarded as a complete and cocomplete symmetric
monoidal closed category. The category 𝑄-𝐂𝐚𝐭 of 𝑄-enriched small categories is symmetric
monoidal closed (Example 4.2). In [4], Balan et al. use 𝑄-𝐂𝐚𝐭-enriched left Kan extensions to
derive endoliftings of endofunctors. In this section we generalize their construction to arbitrary
𝐂𝐋𝐚𝐭∧-fibration 𝜋 ∶ 𝔼 → 𝐒𝐞𝐭 using the symmetric monoidal closed structure on 𝔼 (Section
4.2). We omit the theory of enriched categories, but we refer Kelly’s textbook [22] for the
definitions and concepts in enriched category theory.

To discuss endoliftings of endofunctors, we first introduce some 𝔼-enriched categories and
𝔼-enriched functors, illustrated on the case where 𝔼 is the category 𝐏𝐫𝐞 of preorders and mono-
tone functions, and 𝜋 is the forgetful functor from 𝐏𝐫𝐞.

• Since 𝔼 is symmetric monoidal closed, we view 𝔼 as an 𝔼-enriched category [22, Section
1.6], which is denoted by 𝔼𝑒 in this paper. The hom-object of 𝔼𝑒 is given by 𝔼𝑒(𝑋, 𝑌 ) =
𝑋 ⊸ 𝑌 . When 𝔼 = 𝐏𝐫𝐞, 𝐏𝐫𝐞𝑒 is obtained by ordering monotone functions in a point-wise
manner.

• Since the left adjoint Δ ∶ 𝐒𝐞𝐭 → 𝔼 of 𝜋 (see Section 4.2) is strict monoidal, it yields
the change-of-base5 2-functor Δ∗ ∶ 𝐂𝐀𝐓 → 𝔼-𝐂𝐀𝐓 [22, p.3], whose codomain is the
2-category of 𝔼-enriched categories, 𝔼-enriched functors and 𝔼-enriched natural transfor-
mations [22, Section 1.2]. Δ∗ maps a locally small category ℂ to the 𝔼-enriched category
Δ∗ℂ defined by

𝐎𝐛𝐣(Δ∗ℂ) = 𝐎𝐛𝐣(ℂ), (Δ∗ℂ)(𝐼, 𝐽 ) = Δ(ℂ(𝐼, 𝐽 )).
5This is a different concept from change-of-base of fibration in Section 4.1.
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When 𝔼 = 𝐏𝐫𝐞, Δ maps a set to the discrete order on this set. Δ∗ then maps a category
to itself, where the Hom-sets are considered as discrete orders.

• The fibration 𝜋 ∶ 𝔼 → 𝐒𝐞𝐭 is also strict symmetric monoidal and naturally isomorphic
to 𝔼(Δ1,−). Hence the change-of-base 2-functor 𝜋∗ ∶ 𝔼-𝐂𝐀𝐓 → 𝐂𝐀𝐓 is isomorphic to
the underlying category 2-functor (−)0 ∶ 𝔼-𝐂𝐀𝐓 → 𝐂𝐀𝐓 [22, Section 1.3]. Therefore,
instead of (−)0, we use 𝜋∗ to extract ordinary categories (resp. functors) from 𝔼-enriched
categories (resp. functors).

• For any functor 𝐺 ∶ ℂ → 𝔼, we define the 𝔼-enriched functor 𝐺 ∶ Δ∗ℂ → 𝔼𝑒 by

𝐺𝐼 = 𝐺𝐼, 𝐺𝐼,𝐽 = 𝐺𝐼,𝐽 ∶ (Δ∗ℂ)(𝐼, 𝐽 ) → 𝔼𝑒(𝐺𝐼,𝐺𝐽 );

the latter is the mate of the morphism part of functor 𝐺 by the adjunction Δ ⊣ 𝜋:
𝐺𝐼,𝐽 ∶ ℂ(𝐼, 𝐽 ) → 𝔼(𝐺𝐼,𝐺𝐽 ) = 𝜋(𝐺𝐼 ⊸ 𝐺𝐽 ) = 𝜋(𝔼𝑒(𝐺𝐼,𝐺𝐽 ))

𝐺𝐼,𝐽 ∶ (Δ∗ℂ)(𝐼, 𝐽 ) = Δ(ℂ(𝐼, 𝐽 )) → 𝔼𝑒(𝐺𝐼,𝐺𝐽 ) .

When 𝔼 = 𝐏𝐫𝐞, the mate 𝐺𝐼,𝐽 is 𝐺𝐼,𝐽 considered as a monotone function: indeed, since
(Δ∗ℂ)(𝐼, 𝐽 ) is the set ℂ(𝐼, 𝐽 ) equipped with the discrete order, 𝐺𝐼,𝐽 is automatically
monotone. We also note that 𝜋∗𝐺 = 𝐺.

The following is a generalization of [4, Theorem 3.8 and Proposition 3.43].
Theorem 5.4. Let 𝐹 be an endofunctor on 𝐒𝐞𝐭 and 𝐶 ∶ 𝐒𝐞𝐭 → 𝔼 be a functor such that 𝜋◦𝐶 =
𝐹 (see left triangle below). Then there is an enriched left Kan extension �̇� of 𝐶 ∶ Δ∗𝐒𝐞𝐭 → 𝔼𝑒

along Δ ∶ Δ∗𝐒𝐞𝐭 → 𝔼𝑒 (see right triangle below) such that its underlying functor �̇�0 ∶ 𝔼 → 𝔼
is an endolifting of 𝐹 along 𝜋.

𝔼 𝔼
𝜋
��

𝔼𝑒 �̇� // 𝔼𝑒

𝐒𝐞𝐭
𝐹

//

𝐶
77

Δ

OO

𝐒𝐞𝐭 Δ∗𝐒𝐞𝐭
𝐶

77

Δ

OO

Proof. Since the codomain 𝔼𝑒 of 𝐶 has 𝔼-enriched copowers, the enriched left Kan extension
can be computed by the enriched coend:

𝐋𝐚𝐧Δ𝐶𝑋 = ∫

𝐼∈Δ∗𝐒𝐞𝐭
𝔼𝑒(Δ𝐼,𝑋)⊗𝐶𝐼 ;

see [22, (4.25)]. To simplify notation, we define an 𝔼-enriched functor 𝐵(𝐼, 𝐽 ) ∶ (Δ∗𝐒𝐞𝐭)op ⊗
Δ∗𝐒𝐞𝐭 → 𝔼𝑒 to be the body of this coend, that is, 𝐵(𝐼, 𝐽 ) ≜ 𝔼𝑒(Δ𝐼,𝑋)⊗ 𝐶𝐽 . We also define
an ordinary functor 𝐵 ∶ 𝐒𝐞𝐭op × 𝐒𝐞𝐭 → 𝔼 by 𝐵 ≜ 𝜋∗𝐵. The functor 𝐵 acts on objects and
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morphisms as follows:

𝐵(𝐼, 𝐽 ) = 𝐵(𝐼, 𝐽 ), 𝐵(𝑓, 𝑔) = (𝜋𝐵(𝐼,𝐽 ),(𝐼 ′,𝐽 ′))(𝑓, 𝑔)

where 𝐵(𝐼,𝐽 ),(𝐼 ′,𝐽 ′) ∶ (Δ∗𝐒𝐞𝐭)(𝐼 ′, 𝐼)⊗ (Δ∗𝐒𝐞𝐭)(𝐽 , 𝐽 ′) → 𝔼𝑒(𝐵(𝐼, 𝐽 ), 𝐵(𝐼 ′, 𝐽 ′)) is the morphism
part of 𝐵. By a simple calculation, 𝐵 is equal to the functor 𝜆(𝐼, 𝐽 ) . (Δ𝐼 ⊸ 𝑋)⊗𝐶𝐽 .

Because the codomain of𝐵 is𝔼𝑒, the enriched coend can be computed as an ordinary colimit
of the following large diagram in 𝔼 [22, Section 2.1]:

⋯ 𝐵(𝐼, 𝐼) 𝐵(𝐽 , 𝐽 ) ⋯

⋯

;;__

Δ∗𝐒𝐞𝐭(𝐽 , 𝐼)⊗𝐵(𝐼, 𝐽 )
𝑟𝐼,𝐽

55

𝑙𝐼,𝐽

ii

⋯

cc ??

(9)

where 𝐼, 𝐽 ranges over all objects in 𝐒𝐞𝐭, and 𝑙𝐼,𝐽 and 𝑟𝐼,𝐽 are respectively the uncurrying of

𝐵(𝐼,−)𝐽 ,𝐼 ∶ Δ∗𝐒𝐞𝐭(𝐽 , 𝐼) → 𝔼𝑒(𝐵(𝐼, 𝐽 ), 𝐵(𝐼, 𝐼))

𝐵(−, 𝐽 )𝐼,𝐽 ∶ (Δ∗𝐒𝐞𝐭)op(𝐼, 𝐽 ) → 𝔼𝑒(𝐵(𝐼, 𝐽 ), 𝐵(𝐽 , 𝐽 )).

in 𝔼, respectively. Next, observe that Δ𝐼 ⊗ 𝑋 is an (ordinary) copower of 𝑋 with 𝐼 ∈ 𝐒𝐞𝐭 in
𝔼, because

𝔼(Δ𝐼 ⊗ 𝑋, 𝑌 ) ≃ 𝔼(Δ𝐼,𝑋 ⊸ 𝑌 ) ≃ 𝐒𝐞𝐭(𝐼, 𝜋(𝑋 ⊸ 𝑌 )) = 𝐒𝐞𝐭(𝐼,𝔼(𝑋, 𝑌 )).

We name the passage from right to left 𝜙. The bottom hom-objects of diagram (9) are thus
copowers of 𝐵(𝐼, 𝐽 ) with 𝐒𝐞𝐭(𝐽 , 𝐼) for each 𝐼, 𝐽 ∈ 𝐒𝐞𝐭, and moreover, by easy calculation, we
have 𝑙𝐼,𝐽 = 𝜙(𝐵(𝐼,−)𝐽 ,𝐼 ) and 𝑟𝐼,𝐽 = 𝜙(𝐵(−, 𝐽 )𝐼,𝐽 ). Therefore a colimit of the diagram (9) can
be computed as an ordinary coend of 𝐵 = 𝜆(𝐼, 𝐽 ) . (Δ𝐼 ⊸ 𝑋)⊗𝐶𝐽 .

To compute this large coend of 𝐵, it suffices to show that the coend of 𝜋𝐵 exists in 𝐒𝐞𝐭,
because 𝜋 uniquely lifts coends. We have a natural isomorphism

𝜄𝐼,𝐽 ∶ 𝜋𝐵(𝐼, 𝐽 ) = 𝜋((Δ𝐼 ⊸ 𝑋)⊗𝐶𝐽 ) = 𝔼(Δ𝐼,𝑋) × 𝐹𝐽
≅
→ 𝐒𝐞𝐭(𝐼, 𝜋𝑋) × 𝐹𝐽,

and the right hand side has a coend {𝑖𝐼 ∶ 𝐒𝐞𝐭(𝐼, 𝜋𝑋) ×𝐹𝐼 → 𝐹𝜋𝑋}𝐼∈𝐒𝐞𝐭 defined by 𝑖𝐼 (𝑓, 𝑥) ≜
𝐹𝑓𝑥. Since 𝜋 uniquely lifts colimits (Section 4.2), we obtain a coend of 𝐵. To summarize, the
𝔼-enriched left Kan extension can be computed as

�̇�𝑋 = 𝐋𝐚𝐧Δ𝐶𝑋 =
⋁

𝐼∈𝐒𝐞𝐭
(𝑖𝐼◦𝜄𝐼,𝐼 )∗((Δ𝐼 ⊸ 𝑋)⊗𝐶𝐼).

When we view �̇� as an ordinary functor �̇�0, we have 𝜋(�̇�0𝑋) = 𝐹 (𝜋𝑋); therefore �̇�0 is an
endolifting of 𝐹 along 𝜋.
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Example 5.4. Let 𝜋 be the forgetful functor from 𝐏𝐫𝐞, which is a 𝐂𝐋𝐚𝐭∧-fibration, and 𝐹 be an
endofunctor on 𝐒𝐞𝐭. We compute the enriched left Kan extension 𝐋𝐚𝐧ΔΔ𝐹 . For (𝑋,≤) ∈ 𝐏𝐫𝐞,
the enriched left Kan extension 𝐋𝐚𝐧ΔΔ𝐹 (𝑋,≤𝑋) is the preorder on 𝐹𝑋 generated from the
following binary relation:

{(𝐹𝑓𝑎, 𝐹𝑔𝑎) | 𝐼 ∈ 𝐒𝐞𝐭, 𝑎 ∈ 𝐹𝐼, 𝑓 , 𝑔 ∈ 𝐒𝐞𝐭(𝐼,𝑋),∀𝑖 ∈ 𝐼 . 𝑓 𝑖 ≤𝑋 𝑔𝑖}

= {(𝐹𝑝1𝑎, 𝐹𝑝2𝑎) | 𝑎 ∈ 𝐹 (≤𝑋)}

where 𝑝𝑖 ∶ (≤𝑋) → 𝑋 is the composite of the inclusion (≤𝑋) ↪ 𝑋 ×𝑋 of the preorder relation
and the projection function 𝜋𝑖 ∶ 𝑋 ×𝑋 → 𝑋.

When 𝐹 is the powerset functor 𝑃 , the enriched left Kan extension 𝐋𝐚𝐧ΔΔ𝑃 (𝑋,≤𝑋) gives
the Egli-Milner preorder ⊑𝑋 on 𝑃𝑋, as computed in [4, Remark 3.38]:

𝑉 ⊑𝑋 𝑊 ⟺ (∀𝑣 ∈ 𝑉 . ∃𝑤 ∈ 𝑊 . 𝑣 ≤𝑋 𝑤) and (∀𝑤 ∈ 𝑊 . ∃𝑣 ∈ 𝑉 . 𝑣 ≤𝑋 𝑤).

6 The Category of Endoliftings

In this section, we turn to our goal of systematically comparing coinductive invariants. Our
main result (Proposition 6.1) gives conditions under which a functor between total categories
preserves coinductive invariants. We then show that the specialization preorder functor and
the binary valuation truncation functor satisfy the conditions of this result, thus confirming the
hypothesis advanced in Section 3.
Definition 6.1. Let 𝐹 be an endofunctor on 𝐒𝐞𝐭. We define the category 𝐄𝐋𝐢𝐟𝐭(𝐹 ) by the fol-
lowing data:

• An object is a pair of a 𝐂𝐋𝐚𝐭∧-fibration 𝜋 ∶ 𝔼 → 𝐒𝐞𝐭 and an endolifting �̇� of 𝐹 along 𝜋.

• A morphism from (𝜋, �̇� ) to (𝜌, 𝐹 ) is a functor 𝐻 ∶ dom(𝜋) → dom(𝜌) such that 𝐻 is a
lifting of Id𝐒𝐞𝐭 (that is, 𝜌◦𝐻 = 𝜋), and 𝐻◦�̇� = 𝐹◦𝐻 . Such 𝐻 is called an endolifting
morphism.

We will sometimes suppress the fibrations and write the endolifting morphism 𝐻 ∶ �̇� → 𝐹
or say “𝐻 is an endolifting morphism from �̇� to 𝐹 .” Endolifting morphisms are a useful ab-
straction for comparing coinductive invariants of different endoliftings, thanks to the following
result.
Proposition 6.1. Let 𝐻 be an endolifting morphism from (𝜋, �̇� ) to (𝜌, 𝐹 ). If it preserves carte-
sian morphisms and fibered meets, then 𝐻(𝐼, 𝜈�̇�(𝐼,𝑓 )) = (𝐼, 𝜈𝐹(𝐼,𝑓 )) for all 𝐹 -coalgebras (𝐼, 𝑓 ).

Proof. Let 𝔼 = dom(𝜋) and 𝔽 = dom(𝜌). Note that 𝐻 sends the final sequence in the fiber
𝔼𝐼 to the final sequence in the fiber 𝔽𝐼 : preservation of meets ensures 𝐻⊤𝔼𝐼

= ⊤𝔽𝐼 , and
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𝐻(𝑓 ∗�̇� (𝐴𝐼 )) = 𝑓 ∗𝐹 (𝐻(𝐴𝐼 )) for all 𝐴𝐼 ∈ 𝔼𝐼 , since 𝐻 is a fibration map and an endolift-
ing morphism. Finally, 𝐻 preserving meets ensures 𝐻 preserves the limit of this final sequence
and hence will send the �̇� -coinductive invariant for (𝐼, 𝑓 ) to the 𝐹 -coinductive invariant for
(𝐼, 𝑓 ).

The fact that most of the conditions in this proposition do not depend on the particular
source and target endoliftings makes it highly reusable. The functor 𝐻 being a lifting of Id𝐒𝐞𝐭 ,
preserving cartesian morphisms and fibered meets are all properties independent of �̇� and 𝐹 .
Therefore, after these facts are established, we can rapidly match up pairs of liftings since we
only need to check the commutation condition 𝐻◦�̇� = 𝐹◦𝐻 for each pair.

6.1 Standard Topological Endoliftings

We first prove the hypothesis advanced in Section 3 that the specialization preorder of topolog-
ical invariants matches the relational invariants created by standard liftings. For this, we first
need to extend the codomain of the usual specialization preorder to 𝐄𝐑𝐞𝐥.
Definition 6.2. The specialization preorder functor Spec ∶ 𝐓𝐨𝐩 → 𝐄𝐑𝐞𝐥 is the composition of
𝑆 ∶ 𝐓𝐨𝐩 → 𝐏𝐫𝐞 and 𝜄 ∶ 𝐏𝐫𝐞 → 𝐄𝐑𝐞𝐥, where 𝑆 sends a topological space to its specialization
preorder and 𝜄 is the inclusion of preorders into endorelations.

The “usual” specialization preorder functor 𝑆 has many well-known properties, such as the
fact that it has both left and right adjoints. Its left adjoint takes a preorder to its specialization
or Alexandroff topology, and its right adjoint takes it to its upper topology.
Lemma 6.1. The specialization preorder functor Spec ∶ 𝐓𝐨𝐩 → 𝐄𝐑𝐞𝐥 is a fibration map from
𝜋𝐓𝐨𝐩 to 𝜋𝐄𝐑𝐞𝐥 preserving fibered meets.

Proof. To check it is a fibration map, use the fact that cartesian morphisms in 𝐓𝐨𝐩 are precisely
the continuous maps of the form 𝑓 ∶ (𝐼, 𝑓 ∗𝜎) → (𝐽 , 𝜎) and the cartesian morphisms in 𝐄𝐑𝐞𝐥
are exactly the functions preserving and reflecting the source relation. That Spec preserves
cartesian maps then follows from the definitions.

To check it preserves fibered meets, we note Spec is a right adjoint since both 𝑆 and 𝑈 are
right adjoints. Thus it preserves all limits, including fibered meets.
Proposition 6.2. Suppose 𝑃 is a finitary polynomial in 𝐒𝐞𝐭, (𝐼, 𝑓 ) is a 𝐒𝐞𝐭[[𝑃 ]]-coalgebra, and
�̇� is a finitary polynomial in 𝐓𝐨𝐩 satisfying 𝐏(𝜋𝐓𝐨𝐩)(�̇� ) = 𝑃 . Let �̇� be the interpretation of �̇�
in 𝐓𝐨𝐩, and let 𝐹 be the interpretation of 𝐏(Spec)(�̇� ) in 𝐄𝐑𝐞𝐥. Then Spec(𝜈�̇�(𝐼,𝑓 )) = 𝜈𝐹(𝐼,𝑓 ).

Proof. First, we show Spec is an endolifting morphism from �̇� to 𝐹 . Clearly, Spec is a lifting
of Id𝐒𝐞𝐭 . Since Spec preserves products and coproducts, Proposition 5.1 shows the commutation
condition Spec ◦�̇� = 𝐹◦Spec.

Lemma 6.1 supplies the remaining conditions of Proposition 6.1 in this context.
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This proposition is the key result that allows us to compare topological coinductive invariants
with relational coinductive invariants via the specialization order, as we illustrated in Section 3.
In those examples, we were considering the polynomial (2, 𝑠) × Id × Id in 𝐓𝐨𝐩, whose image
under 𝐏(Spec) is (2,≤2) × Id × Id as a polynomial in 𝐄𝐑𝐞𝐥. Hence, the coinductive invariants
created by the interpretations of these polynomials as endofunctors are matched up by Spec.

In particular, when the constants in the polynomial are restricted so that their specialization
order is the diagonal relation, we obtain topological coinductive invariants whose specialization
order is bisimilarity.
Corollary 6.1. Suppose 𝑃 is a finitary polynomial in 𝐒𝐞𝐭 and �̇� is a finitary polynomial in 𝐓𝐨𝐩
with the property that𝐏(Spec)(�̇� ) = 𝐑𝐞𝐥(𝑃 ). Then define three endofunctors on 𝐒𝐞𝐭,𝐓𝐨𝐩, and 𝐄𝐑𝐞𝐥:

𝐹 = 𝐒𝐞𝐭[[𝑃 ]], �̇� = 𝐓𝐨𝐩[[�̇� ]], 𝐹 = 𝐄𝐑𝐞𝐥[[𝐑𝐞𝐥(𝑃 )]].

Note that �̇� , 𝐹 are respectively 𝐓𝐨𝐩- and 𝐄𝐑𝐞𝐥-liftings of 𝐹 by Corollary 5.1. Suppose that
(𝐼, 𝑓 ) is an 𝐹 -coalgebra.

1. Spec(𝜈�̇�(𝐼,𝑓 )) = 𝜈𝐹(𝐼,𝑓 ). (Recall the 𝐹 -coinductive invariant is the bisimilarity relation.)

2. Two points are topologically indistinguishable in 𝜈�̇�(𝐼,𝑓 ) if and only if they are bisimilar.

3. 𝜈�̇�(𝐼,𝑓 ) is an 𝑅0 topology (topologically indistinguishable points each have a neighbor-
hood not containing the other).

4. (𝐼, 𝑓 ) is simple (has no proper quotients) if and only if 𝜈�̇�(𝐼,𝑓 ) is a 𝑇1 topology (distinct
points each have a neighborhood not containing the other).

Proof. 1. This is a special case of Proposition 6.2.
2. Two points are topologically indistinguishable if and only if they are equivalent in the

specialization preorder, which we have shown is bisimilarity.
3. For finitary polynomial endofunctors on 𝐒𝐞𝐭, bisimilarity is an equivalence relation. A

topology’s specialization preorder is an equivalence relation if and only if the topology is
𝑅0.

4. For finitary polynomial endofunctors on 𝐒𝐞𝐭, a coalgebra being simple is equivalent to
bisimilarity being the diagonal relation. A topology’s specialization preorder is diagonal
if and only if the topology is 𝑇1.

Note that though this proposition requires the specialization order of the constants in a lifting
to be the diagonal, the specialization order of the induced topology need not be the diagonal.
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6.2 𝐁𝐕𝐚𝐥 Endoliftings

Next, we consider coinductive invariants in the category𝐁𝐕𝐚𝐥, which are also called behavioural
(pseudo)metrics when they satisfy the necessary conditions. A common desiderata is that the
kernel of the behavioural metric (i.e., the relation consisting of points at distance 0) is the bisim-
ilarity relation. We can prove this statement with endolifting morphisms.
Definition 6.3. The truncation functor (at 𝜖 ∈ ℝ+), denoted 𝑇𝜖 ∶ 𝐁𝐕𝐚𝐥 → 𝐄𝐑𝐞𝐥 acts on objects
by (𝐼, 𝑟) ↦ (𝐼, {(𝑖, 𝑖′) ∈ 𝐼 × 𝐼 | 𝑟(𝑖, 𝑖′) ≤ 𝜖}) and sends the non-expansive map 𝑓 to the
relation-preserving map 𝑓 .

The functor𝐿𝜖 ∶ 𝐄𝐑𝐞𝐥 → 𝐁𝐕𝐚𝐥 acts on objects by (𝐼, 𝑅) ↦ (𝐼, 𝐿𝜖(𝑅)), where𝐿𝜖(𝑅)(𝑖, 𝑖′) =
0 if (𝑖, 𝑖′) ∈ 𝑅 and is 𝜖 otherwise. It also has the trivial action on functions.

This action on morphisms obviously preserves identities and composition, but it takes a
quick check to verify that nonexpansive maps are indeed sent to relation-preserving maps by 𝑇𝜖

and vice-versa for 𝐿𝜖.
Lemma 6.2. For each 𝜖 ∈ ℝ+, the functor 𝑇𝜖 ∶ 𝐁𝐕𝐚𝐥 → 𝐄𝐑𝐞𝐥 is a fibration map from 𝜋𝐁𝐕𝐚𝐥 to
𝜋𝐄𝐑𝐞𝐥 preserving fibered meets.

Proof. To check it is a fibration map, use the facts that cartesian morphisms in 𝐁𝐕𝐚𝐥 are isome-
tries and cartesian morphisms in𝐄𝐑𝐞𝐥 preserve and reflect their source relations. Then checking
that 𝑇𝜖 preserves cartesian morphisms is straightforward.

The left adjoint of 𝑇𝜖 is 𝐿𝜖.
Proposition 6.3. Suppose �̇� is a finitary polynomial in 𝐁𝐕𝐚𝐥 and define �̇� = 𝐁𝐕𝐚𝐥[[�̇� ]] and
𝐹 = 𝐄𝐑𝐞𝐥[[𝐏(𝑇𝜖)(�̇� )]]. Then 𝑇𝜖 is an endolifting morphism from �̇� to 𝐹 .

Proof. That 𝑇𝜖 is a lifting of Id𝐒𝐞𝐭 is clear. We verify the commutation condition by again
invoking Proposition 5.1. Since 𝑇𝜖 is a right adjoint, it preserves products. The only remaining
obligation is to check preservation of coproducts, which is a routine exercise.
Corollary 6.2. Suppose �̇� is a finitary polynomial in 𝐁𝐕𝐚𝐥. Let 𝐹 = 𝐒𝐞𝐭[[𝐏(𝜋𝐁𝐕𝐚𝐥)(�̇� )]], �̇� =
𝐁𝐕𝐚𝐥[[�̇� ]], and 𝐹 = 𝐄𝐑𝐞𝐥[[𝐏(𝑇𝜖)(�̇� )]]. If (𝐼, 𝑓 ) is an 𝐹 -coalgebra, then 𝑇𝜖(𝜈�̇�(𝐼,𝑓 )) = 𝜈𝐹(𝐼,𝑓 ).

If additionally 𝜖 = 0 and 𝐏(𝑇0)(�̇� ) = 𝐑𝐞𝐥(𝐏(𝜋𝐁𝐕𝐚𝐥)(�̇� )), then the image of a behavioural
pseudometric under 𝑇0 (the kernel of that pseudometric) is bisimilarity.

Proof. Proposition 6.3 and Lemma 6.2 establish the conditions of Proposition 6.1 for 𝑇𝜖.
In the special case, 𝐹 is a canonical relation lifting and hence 𝜈𝐹(𝐼,𝑓 ) is bisimilarity.
This establishes 𝑇0 sends behavioural metrics on finitary polynomial endofunctors to bisim-

ilarity. We also want to show that the Hausdorff lifting of 𝑃fin has bisimilarity as its kernel.
Therefore, we extend our induction on the structure of the finitary polynomial to include push-
forwards along natural transformations. In general, 𝑇𝜖 being an endolifting morphism between
two functors does not imply that it is an endolifting morphism between their pushforwards.
However, we can add a condition under which this does hold.
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Proposition 6.4. Let 𝐹 ,𝐺 be endofunctors on 𝐒𝐞𝐭, 𝑇𝜖 ∶ (𝜋𝐁𝐕𝐚𝐥, �̇� ) → (𝜋𝐄𝐑𝐞𝐥, 𝐹 ) be a morphism
in 𝐄𝐋𝐢𝐟𝐭(𝐹 ), and 𝜏 ∶ 𝐹 → 𝐺 be a natural transformation, and �̇� and �̈� be pushforwards of �̇�
and 𝐹 along 𝜏. Further suppose for every set 𝐼 , every 𝑓, 𝑓 ′ ∈ 𝐺𝐼 and 𝑟 ∶ 𝐼 × 𝐼 → ℝ+, the
greatest lower bound for {�̇� 𝑟(𝑝, 𝑝′) | 𝜏𝑝 = 𝑓 and 𝜏𝑝′ = 𝑓 ′} is achieved in this set. Then 𝑇𝜖 is
an endolifting morphism from (𝜋, �̇�) to (𝜌, �̈�).

Proof. We prove that (𝑇𝜖◦�̇�)(𝐼, 𝑟) = (�̈�◦𝑇𝜖)(𝐼, 𝑟) for all 𝐼 and 𝑟.
We know the pushforward operation in 𝐁𝐕𝐚𝐥 and 𝐄𝐑𝐞𝐥 explicitly, so:

�̇�(𝐼, 𝑟) = (𝐺𝐼, 𝜆𝑓𝑓 ′. inf
𝜏𝑝=𝑓
𝜏𝑝′=𝑓 ′

�̇� 𝑟(𝑝, 𝑝′))

�̈�(𝐼, 𝑅) = (𝐺𝐼, {(𝑓, 𝑓 ′) | ∃𝑝, 𝑝′ ∈ 𝐹𝐼.𝜏𝑝 = 𝑓, 𝜏𝑝′ = 𝑓 ′ and (𝑝, 𝑝′) ∈ 𝐹𝑅})

Given particular 𝑓 and 𝑓 ′, our assumption about the lower bound ensures there are 𝑝1, 𝑝2 ∈ 𝐹𝐼
with 𝜏𝑝1 = 𝑓 and 𝜏𝑝2 = 𝑓 ′ such that inf

𝜏𝑝=𝑓
𝜏𝑝′=𝑓 ′

�̇� 𝑟(𝑝, 𝑝′) = �̇� 𝑟(𝑝1, 𝑝2). Therefore,

(𝑇𝜖◦�̇�)𝑟 = {(𝑓, 𝑓 ′) | inf
𝜏𝑝=𝑓
𝜏𝑝′=𝑓 ′

�̇� 𝑟(𝑝, 𝑝′) ≤ 𝜖}

= {(𝑓, 𝑓 ′) | ∃𝑝1, 𝑝2.𝜏𝑝1 = 𝑓, 𝜏𝑝2 = 𝑓 ′ and �̇� 𝑟(𝑝1, 𝑝2) ≤ 𝜖}

= {(𝑓, 𝑓 ′) | ∃𝑝1, 𝑝2.𝜏𝑝1 = 𝑓, 𝜏𝑝2 = 𝑓 ′ and (𝑝1, 𝑝2) ∈ (𝑇𝜖◦�̇� )𝑟}

= {(𝑓, 𝑓 ′) | ∃𝑝1, 𝑝2.𝜏𝑝1 = 𝑓, 𝜏𝑝2 = 𝑓 ′ and (𝑝1, 𝑝2) ∈ (𝐹◦𝑇𝜖)𝑟}

= (�̈�◦𝑇𝜖)(𝑟)

as desired.
We can now apply this proposition to obtain the following corollary.

Corollary 6.3. 𝑇0 is an endolifting morphism from (𝜋𝐁𝐕𝐚𝐥, 𝑃 𝐁𝐕𝐚𝐥
fin ) to (𝜋𝐄𝐑𝐞𝐥, 𝑃 𝐄𝐑𝐞𝐥

fin ). Therefore,
the Hausdorff behavioural metric on 𝑃fin-coalgebras has 𝑃 𝐄𝐑𝐞𝐥

fin -coinductive invariants at its ker-
nel.

Proof. Proposition 6.3 implies 𝑇0 is an endolifting morphism from the standard 𝐁𝐕𝐚𝐥 lifting
for the list functor to the standard 𝐄𝐑𝐞𝐥 lifting for the list functor. We know 𝑃 𝐁𝐕𝐚𝐥

fin and 𝑃 𝐄𝐑𝐞𝐥
fin are

the pushforwards of these list functors along set𝑋 in their respective total categories. Hence to
apply Proposition 6.4 we only need to show the infimum from ′𝑑(𝐾,𝐿) is always achieved,
which we exhibited is true with 𝑠(𝐾,𝐿) and 𝑡(𝐾,𝐿) from section 5.3.

Since 𝑇0 is an endolifting morphism, we can use Lemma 6.2 to conclude the Hausdorff
behavioural metric has bisimilarity at its kernel.
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6.3 Approximate Bisimulations: An Example From Control Theory

Here we present an example from a rather different context: approximate bisimulation by Gi-
rard and Pappas [12]. Defined as a binary relation on a metric space that is subject to the
“mimicking” condition, the notion is widely used in control theory as a quantitative relaxation
of usual (Milner-Park) bisimulation that allows bounded errors. Its principal use is in bounding
errors caused by some abstraction of dynamical systems: given the original dynamics  , one
derives its abstraction ; by exhibiting an 𝜖-approximate bisimulation between  and , one
then shows that the difference between the trajectory of  and that of  is bounded by 𝜖. Such
abstraction methods include: state space discretization [14] and ignoring switching delays [24].
See [13] for an overview.

In the above scenario, an 𝜖-approximate bisimulation between  and  is synthesized
through analysis of the continuous dynamics of : for example the incremental stability of
 yields an approximate bisimulation via its Lyapunov-type witness. Another common strat-
egy for finding an approximate bisimulation is via a bisimulation function. Our goal here is to
describe the latter strategy in the current coalgebraic and fibrational framework.

We fix the set 𝑂 of output values together with a distance function 𝑑 ∶ 𝑂 × 𝑂 → ℝ+,
and a 𝑈 -labeled finitely branching transition system (𝑄, 𝛿 ∶ 𝑄 →

∏

𝑢∈𝑈 𝑃fin𝑄) with an output
function 𝑜 ∶ 𝑄 → 𝑂. An 𝜖-approximate bisimulation relation is a binary relation 𝑅 ⊆ 𝑄 × 𝑄
such that

∀(𝑞, 𝑞′) ∈ 𝑅 . 𝑑(𝑜(𝑞), 𝑜(𝑞′)) ≤ 𝜖 and ∀𝑙 ∈ 𝑈 .

(∀𝑟 ∈ 𝑄 . 𝑟 ∈ 𝛿(𝑙, 𝑞) ⟹ ∃𝑟′ ∈ 𝑄 . 𝑟′ ∈ 𝛿(𝑙, 𝑞′) and (𝑟, 𝑟′) ∈ 𝑅)and
(∀𝑟′ ∈ 𝑄 . 𝑟′ ∈ 𝛿(𝑙, 𝑞′) ⟹ ∃𝑟 ∈ 𝑄 . 𝑟 ∈ 𝛿(𝑙, 𝑞) and (𝑟, 𝑟′) ∈ 𝑅). (10)

The difference from the usual Milner-Park bisimulation is that 𝑅 is additionally required to
witness the 𝜖-proximity of outputs of related states 𝑞 and 𝑞′.

A bisimulation function is a quantitative (real-valued) witness for an approximate bisimula-
tion. In many settings in control theory where dynamics are smooth and described by ordinary
differential equations, such real-valued functions are easier to come up with than an approxi-
mate bisimulation itself. For the above LTS, a function 𝑣 ∶ 𝑄 × 𝑄 → ℝ+ is a bisimulation
function if it satisfies, for each 𝑞, 𝑞′ ∈ 𝑄,

max
(

𝑑
(

𝑜(𝑞), 𝑜(𝑞′)
)

, sup
𝑙∈𝑈

𝑣
(

𝛿(𝑙, 𝑞), 𝛿(𝑙, 𝑞′)
)

)

≤ 𝑣(𝑞, 𝑞′) (11)

A crucial fact is that a bisimulation function 𝑣 gives rise to an 𝜖-approximate bisimulation
{(𝑞, 𝑞′) | 𝑣(𝑞, 𝑞′) ≤ 𝜖}. See generally [13]. Below we give a coalgebraic account of this argu-
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ment. We introduce three endofunctors on 𝐁𝐕𝐚𝐥,𝐄𝐑𝐞𝐥 and 𝐒𝐞𝐭 (𝜖 ∈ ℝ+):

�̇�lts ≜ (𝑂, 𝑑) ×
∏

𝑢∈𝑈 𝑃 𝐁𝐕𝐚𝐥
fin 𝐹𝜖-lts ≜ (𝑂, 𝑇𝜖𝑑) ×

∏

𝑢∈𝑈 𝑃 𝐄𝐑𝐞𝐥
fin 𝐹lts ≜ 𝑂 ×

∏

𝑢∈𝑈 𝑃fin

We then package the 𝑈 -labeled finitely branching transition system (𝑄, 𝛿) and the output func-
tion 𝑜 into a single 𝐹lts-coalgebra  = (𝑄, ⟨𝑜, 𝛿⟩ ∶ 𝑄 → 𝐹lts𝑄).
Proposition 6.5. The following holds.

1. �̇�lts and 𝐹𝜖-lts are 𝐁𝐕𝐚𝐥- and 𝐄𝐑𝐞𝐥-liftings of 𝐹lts, respectively.

2. (𝑄, 𝑣) ∈ 𝐁𝐕𝐚𝐥 is a �̇�lts-invariant on  if and only if 𝑣 ∶ 𝑄 × 𝑄 → ℝ+ is a bisimulation
function.

3. (𝑄,𝑅) ∈ 𝐄𝐑𝐞𝐥 is a 𝐹𝜖-lts-invariant on  if and only if 𝑅 ⊆ 𝑄 × 𝑄 is an 𝜖-approximate
bisimulation relation.

4. 𝑇𝜖 is an endolifting morphism from (𝜋𝐁𝐕𝐚𝐥, �̇�lts) to (𝜋𝐄𝐑𝐞𝐥, 𝐹𝜖-lts).

5. if 𝑣 ∶ 𝑄 ×𝑄 → ℝ+ is a bisimulation function, then 𝑇𝜖(𝑄, 𝑣) is an 𝜖-approximate bisimu-
lation.

Proof. 1) Easy. 2,3) By unfolding the definitions the following can be observed: 𝐹𝜖-lts-invariants
on 𝑄 are nothing but 𝜖-approximate bisimulations; and �̇�lts-invariants on 𝑄 are bisimulation
functions. 4) Thanks to Proposition 6.3 and Corollary 6.3, the functor 𝑇𝜖—which sends the
function 𝑣 ∶ 𝑄 × 𝑄 → ℝ+ to the relation {(𝑞, 𝑞′) | 𝑣(𝑞, 𝑞′) ≤ 𝜖}—is an endolifting morphism
from �̇�lts to 𝐹𝜖-lts. 5) 𝑇𝜖 transfers a �̇�lts-invariant (𝑄, 𝑣) to a 𝐹𝜖-lts-invariant (𝑄, 𝑇𝜖𝑣) on 𝑄, that is,
a bisimulation function to an 𝜖-approximate bisimulation.

7 Conclusions and Future Work

We presented a fibrational framework for various extensions of (bi)simulation notions. On the
categorical side our focus has been on structural aspects of fibrations such as fibration maps and
lifting by Kan extensions; on the application side we took examples from quantitative reasoning
about systems. This has allowed us to capture known constructions in more abstract and general
terms, such as the Hausdorff pseudometric and approximate bisimulation in control theory.
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