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Abstract7

Directed sets are of fundamental interest in domain theory and topology. In this paper, we formalize8

some results on directed sets in Isabelle/HOL, most notably: under the axiom of choice, a poset has9

a supremum for every directed set if and only if it does so for every chain; and a function between10

such posets preserves suprema of directed sets if and only if it preserves suprema of chains. The11

known pen-and-paper proofs of these results crucially use uncountable transfinite sequences, which12

are not directly implementable in Isabelle/HOL. We show how to emulate such proofs by utilizing13

Isabelle/HOL’s ordinal and cardinal library. Thanks to the formalization, we relax some conditions14

for the above results.15
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1 Introduction22

A directed set is a set D equipped with a binary relation ⊑ such that any finite subset X ⊆ D23

has an upper bound in D with respect to ⊑. The property is often equivalently stated that24

D is non-empty and any two elements x, y ∈ D have a bound in D, assuming that ⊑ is25

transitive (as in posets).26

Directed sets find uses in various fields of mathematics and computer science. In topology27

(see for example the textbook [8]), directed sets are used to generalize the set of natural28

numbers: sequences N→ A are generalized to nets D → A, where D is an arbitrary directed29

set. For example, the usual result on metric spaces that continuous functions are precisely30

functions that preserve limits of sequences can be generalized in general topological spaces31

as: the continuous functions are precisely functions that preserve limits of nets. In domain32

theory [1], key ingredients are directed-complete posets, where every directed subset has a33

supremum in the poset, and Scott-continuous functions between posets, that is, functions34

that preserve suprema of directed sets. Thanks to their fixed-point properties (which we35

have formalized in Isabelle/HOL in a previous work [6]), directed-complete posets naturally36

appear in denotational semantics of languages with loops or fixed-point operators (see for37

example Scott domains [13, 15]). Directed sets also appear in reachability and coverability38

analyses of transition systems through the notion of ideals, that is, downward-closed directed39

sets. They allow effective representations of objects, making forward and backward analysis40

of well-structured transition systems – such as Petri nets – possible (see e.g., [7]).41

Apparently milder generalizations of natural numbers are chains (totally ordered sets)42

or even well-ordered sets. In the mathematics literature, the following results are known43

(assuming the axiom of choice):44
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20:2 Formalizing Results on Directed Sets in Isabelle/HOL (Proof Pearl)

▶ Theorem 1 ([5]). A poset is directed-complete if (and only if) it has a supremum for every45

non-empty well-ordered subset.46

▶ Theorem 2 ([10]). Let f be a function between posets, each of which has a supremum47

for every non-empty chain. If f preserves suprema of non-empty chains, then it is Scott-48

continuous.49

The pen-and-paper proofs of these results use induction on cardinality, where the finite50

case is merely the base case. The core of the proof is a technical result called Iwamura’s51

Lemma [9], where the countable case is merely an easy case, and the main part heavily uses52

transfinite sequences indexed by uncountable ordinals.53

In this paper, we formalize these results in the proof assistant Isabelle/HOL [11]. We54

extensively use the existing library for ordinals and cardinals in Isabelle/HOL [4], but we55

needed some delicate work in emulating the pen-and-paper proofs. In Isabelle/HOL, or any56

proof assistant based on higher-order logic (HOL), it is not possible to have a datatype for57

arbitrarily large ordinals; hence, it is not possible to directly formalize transfinite sequences.58

We show how to emulate transfinite sequences using the ordinal and cardinal library [4]. As59

far as the authors know, our work is the first to mechanize the proof of Theorems 1 and 2,60

as well as Iwamura’s Lemma. We prove the two theorems for quasi-ordered sets, relaxing61

antisymmetry, and strengthen Theorem 2 so that chains are replaced by well-ordered sets62

and conditions on the codomain are completely dropped.63

Related Work64

Systems based on Zermelo-Fraenkel set theory, such as Mizar [2, 3] and Isabelle/ZF [12], have65

more direct support for ordinals and cardinals and should pose less challenge in mechanizing66

the above results. Nevertheless, a part of our contribution is in demonstrating that the power67

of (Isabelle/)HOL is strong enough to deal with uncountable transfinite sequences.68

Except for the extra care for transfinite sequences, our proof of Iwamura’s Lemma is69

largely based on the original proof from [9]. Markowsky presented a proof of Theorem 1 using70

Iwamura’s Lemma [10, Corollary 1]. While he took a minimal-counterexample approach, we71

take a more constructive approach to build a well-ordered set of suprema. This construction72

was crucial to be reused in the proof of Theorem 2, which Markowsky claimed without a73

proof [10]. Another proof of Theorem 1 can be found in [5], without using Iwamura’s Lemma,74

but still crucially using transfinite sequences.75

Outline76

The paper is organized as follows. In Section 2, we recall some basic concepts of order theory,77

ordinals, and cardinals, as well as their prior formalizations [4, 6]. In Section 3, we tackle the78

main formalization work of Iwamura’s Lemma. The axiom of choice plays two crucial roles79

in the proof: first to obtain a well-ordering of a given set, and then to pick an upper bound80

for every finite subset. Finally, we use induction on directed sets – enabled by Iwamura’s81

Lemma – to prove the equivalence between directed-completeness and well-completeness82

(Section 4), and the equivalence between Scott-continuity and preservation of suprema of83

chains (Section 5).84

The formalization is available in the development version of the Archive of Formal Proofs85

as entry Directed_Sets, consisting of 726 lines of Isabelle code in total. The work also86
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involves refactoring of our previous AFP entry Complete_Non_Orders1 for reformulating87

continuity, completeness, well-foundedness and directed sets. The most changes are found88

in the new files Continuity.thy and Directedness.thy (427 lines).89

2 Preliminaries90

We assume some familiarity with Isabelle/HOL and use its notations also in mathematical91

formulas in the paper. We refer interested readers to the textbook [11] for more detail.92

Logical implication is denoted by =⇒ or−→. We use meta-equality ≡ to introduce definitions93

and abbreviations. By X :: ’a set we denote a set X whose elements are of type ’a, and94

R :: ’a ⇒ ’a ⇒ bool is a binary predicate defined over ’a. Type annotations “:: _” are95

omitted unless necessary. The application of a function f to an element x is written f x, and96

the image of a set X under f is f ‘ X . The power set of X is denoted by Pow X .97

2.1 Binary Relations98

In our previous Isabelle/HOL formalization on binary relations [6], some notations and99

properties of relations are defined as locales. Another approach is to use Isabelle’s type class100

mechanism, which fixes a relation ≤ for each type so that one do not have to specify the101

relation of concern as a parameter. The drawback of the class-based approach is that one102

must use this relation ≤, which is too restrictive in the current development where we want103

to use some well-ordering of a given set.104

To illustrate the use of locales, we revisit some definitions we need for the current paper.105

By related set we mean a set A with a binary relation (predicate) less_eq defined on A,106

denoted by infix symbol ⊑. In Isabelle:107

locale related_set =108

fixes A :: ’a set and less_eq :: ’a ⇒ ’a ⇒ bool (infix ⊑ 50 )109

Then reflexivity and transitivity are defined as locales by making corresponding assumptions110

as follows:111

locale reflexive = related_set + assumes x ∈ A =⇒ x ⊑ x112

locale transitive = related_set +113

assumes x ⊑ y =⇒ y ⊑ z =⇒ x ∈ A =⇒ y ∈ A =⇒ z ∈ A =⇒ x ⊑ z114

Then quasi-ordered sets are defined as the combination of reflexivity and transitivity:115

locale quasi_ordered_set = reflexive + transitive116

In this paper, we may use terminologies assuming that the right side of ⊑ is “greater”,117

and use ⊒ to denote the dual of ⊑, though the notation is not always available in the actual118

Isabelle code. An (upper) bound of a set X is formalized by119

definition bound X (⊑) b ≡ ∀x ∈ X . x ⊑ b for r (infix ⊑ 50 )120

Dually, bound X (⊒) b specifies a lower bound. A greatest (extreme) element in X is a bound121

which is also in X:122

1 www.isa-afp.org/entries/Complete_Non_Orders
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definition extreme X (⊑) e ≡ e ∈ X ∧ (∀x ∈ X . x ⊑ e) for r (infix ⊑ 50 )123

Dually, extreme X (⊒) e specifies a least element. The following generalization of well-124

ordered sets frequently appears in this paper:125

locale well_related_set = related_set +126

assumes X ⊆ A =⇒ X ̸= {} =⇒ ∃e. extreme X (⊒) e127

that is, a set A together with a relation ⊑ such that every non-empty subset of A has a128

least element for ⊑. It can be also rephrased as the well-foundedness of the negation of ⊑.129

A well-related set is necessarily reflexive, which can be formalized by a sublocale statement:130

sublocale well_related_set ⊆ reflexive...131

A well-ordered set is a well-related set where ⊑ is also antisymmetric (or equivalently a total132

order). A pre-well-ordered set is a well-related set which is also a quasi-order.133

2.2 Ordinals and Cardinality Library134

Here we briefly recap the ordinal and cardinality library [4] of Isabelle/HOL.135

The library chooses the set-oriented formulation of relations: type ’a rel is a shorthand136

for (’a × ’a) set, and proposition (x,y) ∈ R denotes that x and y are in relation R :: ’a rel.137

An order embedding of a relation (A,⊑) into (B,⊴) is a function f : A → B such that138

x ⊑ y ⇐⇒ f x ⊴ f y. The polymorphic relation ≤o :: ’a rel ⇒ ’b rel ⇒ bool over binary139

relations is defined by R ≤o S if and only if there is an order embedding from R to S . Two140

relations R :: ’a rel and S :: ’b rel are order isomorphic, R =o S , if R ≤o S and S ≤o R.141

One of the important results from the ordinal library is that <o, the asymmetric part142

of ≤o (defined by x <o y ≡ x ≤o y ∧ ¬ y ≤o x), seen as a relation over the same type, is143

well-founded. In fact, ≤o forms a pre-well-order.144

Conceptually, an ordinal can be seen as the equivalence class of well-orderings which are145

order isomorphic to each other. In Isabelle/HOL, or in any other HOL-based systems, it is146

not possible to have a set collecting well-orderings of different types. It is hence not possible147

to have a type for general ordinals in Isabelle/HOL. Instead, any well-ordering of any type148

is used to represent an ordinal in [4].149

The cardinality of a set X is the least ordinal that is bijective with X . In Isabelle/HOL,150

|X | :: ’a rel is defined as one of the well-orderings on X :: ’a set which are least with respect151

to ≤o; there are well-orderings on X thanks to the well-order theorem (which is in turn due152

to the axiom of choice), and there are least ones since ≤o is a pre-well-order.153

3 Iwamura’s Lemma154

The main idea for proving Theorem 1 is, given a directed set D, to construct a well-ordered155

set whose supremum (which exists by assumption) is also a supremum for D. The difficulty is156

that the usual methods to construct a well-ordered set, such as Zorn’s lemma, fail to achieve157

this goal. The crucial idea brought by Markowsky [10, Corollary 1] is that this well-ordered158

set can be obtained by a transfinite induction on the cardinality of the directed set, using159

Iwamura’s Lemma [9]. Concretely, Iwamura’s Lemma states the following:160

▶ Theorem 3. Let (A,⊑) be a reflexive directed set. If A is infinite, then there exists a161

transfinite sequence {Iα}α<|A| of subsets of A that satisfies the following four conditions:162
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directedness: Iα is directed for all α < |A|,163

cardinality: |Iα| < |A| for all α < |A|,164

monotonicity: Iα ⊆ Iβ whenever α ≤ β < |A|, and165

range:
∪

α<|A| Iα = A.166

Note that, if we drop directedness, then the statement is equivalent to the well-ordering167

theorem. The main point of Iwamura’s Lemma is that one can extend any subset of a168

directed set into a directed one without changing the cardinality.169

As in the original statement, ⊑ need not be transitive. Hence, directedness is formalized170

as follows:171

definition directed_set A (⊑) ≡ ∀X ⊆ A. finite X −→ (∃b ∈ A. bound X (⊑) b)172

for less_eq (infix ⊑ 50 )173

As the proof involves a number of (inductive) definitions, we build a locale for collecting174

those definitions and lemmas.175

locale Iwamura_proof = related_set +176

assumes dir : directed_set A (⊑)177

begin178

Inside this locale, a related set (A,⊑) is fixed and assumed to be directed. The proof starts179

with declaring, using the axiom of choice, a function f that chooses a bound f X ∈ A for180

every finite subset X ⊆ A. This function can be formalized using the SOME construction:181

definition f where f X ≡ SOME x . x ∈ A ∧ bound X (⊑) x182

In Isabelle, SOME x . ϕ x takes some value x that satisfies the condition ϕ x, if such a value183

exists; otherwise it takes an unspecified value. As we assume that any finite subset X ⊆ A184

has an upper bound in A, we can prove that f satisfies the following specification:185

lemma assumes X ⊆ A and finite X186

shows f X ∈ A and bound X (⊑) (f X) ...187

After obtaining this f , the proof constructs {Iα}α<|A| depending crucially on whether A188

is countably or uncountably infinite.189

3.1 Uncountable Case190

We start with the core case, where A is uncountable. The original proof goes as follows:191

Thanks to the well-order theorem, one can have a sequence {Aα}α<|A| of subsets of A that192

satisfies the following three conditions:193

cardinality: |Aα| < |A| for every α < |A|,194

monotonicity: Aα ⊆ Aβ whenever α ≤ β < |A|, and195

range: A =
∪

α<|A| Aα.196

Then it is shown that any subset of A, in particular Aα, can be monotonically extended to197

a directed one Iα, such that |Iα| ≤ |Aα| · ℵ0. Since |Aα| < |A| and |A| is uncountable, it198

follows that |Iα| < |A|.199

In order to formalize the above argument in Isabelle/HOL, one of the challenges is that200

we do not have a datatype for ordinals (that works for arbitrary types of A), and thus one201

cannot formalize transfinite sequences as functions from ordinals.202

ITP 2023
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3.1.1 Formalizing Transfinite Sequences203

As we cannot formalize transfinite sequences directly, we take the following approach: We204

just use A as the index set, and instead of the ordering on ordinals, we take the well-order205

(⪯A) that is chosen by the cardinality library to denote |A|, as follows:206

definition ... where (⪯A) x y ≡ (x,y) ∈ |A|207

Recall that |A| is defined as one of the well-orders on A which are least with respect to ≤o,208

in a set-oriented formulation of relations. We also introduce infix notations for ⪯A and its209

asymmetric part ≺A as follows:210

abbreviation ... where x ⪯A y ≡ (⪯A) x y211

abbreviation ... where x ≺A y ≡ asympartp (⪯A) x y212

Now we show that A≺ : A → Pow A serves the purpose of {Aα}α<|A| above, where213

definition ... where A≺ a ≡ {x ∈ A. x ≺A a}214

First, we prove the counterpart of the cardinality condition |Aα| < |A|.215

lemma Pre_card: assumes a ∈ A shows |A≺ a| <o |A|216

Proof. On pen and paper, one would first well-order A as {aα}α<|A| and chose Aα =217

{aβ}β<α; then |Aα| < |A| would look obvious. Note that there is an implicit use of the fact218

that |A| is least; otherwise α < |A| and |{aβ}β<α| = |A| is possible.219

In the formalization, we derive this fact by connecting to the cardinality library. In220

fact, A≺ a corresponds precisely to underS |A| a in terms of the library. Then lemma221

card_of_underS from the library easily concludes the lemma. ◀222

Second, the monotonicity condition, Aα ⊆ Aβ whenever α ≤ β, is easy:223

lemma Pre_mono: monotone_on A (⪯A) (⊆) (A≺) ...224

The final property we need is
∪

α<|A| Aα = A. This is not as easy as the previous two225

properties; note that it cannot hold for finite A. We first prove that if the well-ordering226

(A,⪯A) has a greatest element, then A must be finite:227

lemma extreme_imp_finite: assumes extreme A (⪯A) e shows finite A228

Proof. Since e is greatest in A, we have A≺ e = A − {e}. On the other hand, |A − {e}|229

=o |A| if A is infinite. This cannot happen due to Lemma Pre_card. ◀230

This allows us to prove the desired property:231

lemma infinite_imp_Un_Pre: assumes infinite A shows
∪

(A≺ ‘ A) = A232

Proof. The inclusion A≺ ‘ A ⊆ A is obvious. For the other direction, consider a ∈ A. Due233

to Lemma extreme_imp_finite, a cannot be the greatest in A with respect to ⪯A. So there234

exists some b ∈ A such that a ≺A b. Hence a ∈ A≺ b ⊆
∪

(A≺ ‘ A). ◀235
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3.1.2 Expanding Infinite Sets into Directed Sets236

Actually, the main part of the proof of Iwamura’s Lemma is about monotonically expanding237

an infinite subset (in particular Aα) of A into a directed one, without changing the cardinality.238

To this end, Iwamura’s original proof introduces a function F : Pow A→ Pow A that expands239

a set with upper bounds of all finite subsets. This approach is different from Markowsky’s240

reproof (based on [14]) which uses nested transfinite induction to extend a set one element241

after another.242

definition F where F X ≡ X ∪ f ‘ Fpow X243

Here, Fpow X is an Isabelle/HOL notation for the set of finite subsets of X . Hence, for any244

finite subset Y of X , there is an upper bound f Y in F X . We take the ω-iteration of the245

monotone function F , namely:246

definition Flim (Fω) where Fω X ≡
∪

i. F i X247

We prove that {Fω (A≺ a)}a∈A serves the purpose of {Iα}α<|A| when A is uncountable.248

Directedness condition is satisfied regardless of uncountability. More generally, Fω X is249

directed for every X ⊆ A.250

lemma Flim_directed: assumes X ⊆ A shows directed_set (Fω X) (⊑)251

Proof. Take an arbitrary finite subset Y ⊆ Fω X. Since Y is finite, we inductively obtain252

i ∈ N such that Y ⊆ F i X, i.e., Y ∈ Fpow (F i X). Hence we find an upper bound f Y ∈253

F i+1 X ⊆ Fω X . ◀254

The cardinality condition holds when |A| is uncountable. Using the cardinality library,255

(un)countability is stated using the term natLeq, which denotes the well-order (N,≤), i.e.,256

the ordinal ω or cardinality ℵ0.257

lemma card_uncountable:258

assumes a ∈ A and natLeq <o |A| shows |Fω (A≺ a)| <o |A|259

Proof. Let X = A≺ a. The proof proceeds by case distinction on whether X is finite or not.260

If X is finite, then every F i X is finite and thus Fω X is at most countable. Note that Fω X261

is not necessarily finite. Nevertheless, since A is assumed to be uncountable, we conclude262

|Fω X | <o |A|.263

Now we show that if X is infinite, then |Fω X | =o |X |. This will conclude the claim as264

|X | <o |A| due to Lemma Pre_card. First, we have |F X | =o |X |. This is easy using the265

library fact card_of_Fpow_infinite: infinite X =⇒ |Fpow X | =o |X |. Then this property is266

carried over to |F i X | =o |X | for every i ∈ N, proved by an easy induction.267

Now, the following fact (card_of_UNION_ordLeq_infinite) is available in the library:268

infinite B =⇒ |I | ≤o |B| =⇒ ∀i∈I . |A i| ≤o |B| =⇒ |
∪

(A ‘ I )| ≤o |B|269

Since X is infinite, we know |N| ≤o |X |, and we have proved that |F i X | ≤o |X | for all270

i ∈ N. Thus, by taking I = N, A i = F i X , and B = X , we conclude |Fω X | ≤o |X | <o |A|.271

Since X ⊆ Fω X , we also have |Fω X | =o |X |. ◀272

Monotonicity is due to that of the building components:273

lemma mono_uncountable: monotone_on D (⪯A) (⊆) (Fω ◦ A≺)274

ITP 2023
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Proof. As A≺ is monotone (Lemma Pre_mono) and monotonicity is preserved by compos-275

ition, it suffices to show that Fω is monotone. It is easy to see that F is monotone. Then276

so is F i for every i ∈ N, as i-th fold of a monotone function is still monotone. Finally, we277

conclude the monotonicity of Fω by the following more general statement:278

lemma Sup_funpow_mono:279

fixes f :: ’a :: complete_lattice ⇒ ’a280

assumes mono f shows mono (
⊔

i. f i) ...281

which is proved easily. ◀282

Finally, for the range condition, the infiniteness of A is sufficient.283

lemma range_uncountable: assumes infinite A shows
∪

((Fω ◦ A≺) ‘ A) = A284

Proof. The (⊆)-direction is obvious. For the (⊇)-direction, take a ∈ A. As A is infinite, by285

lemma extreme_imp_finite, we obtain b ∈ A such that a ∈ A≺ b. By definition, X ⊆ F X .286

By induction, X ⊆ Fω X . We conclude a ∈ A≺ b ⊆ Fω (A≺ b) ⊆
∪

((Fω ◦ A≺) ‘ A. ◀287

3.2 Countable Case288

Next we consider the case where A is countably infinite. We make the assumption by making289

a subcontext within the locale Iwamura_proof :290

context291

assumes countable: |A| =o natLeq292

begin293

The assumption above means that there exists an order-isomorphism between (N,≤) and294

(A,⪯A). In Isabelle/HOL, we can obtain the isomorphism as follows:295

definition seq :: nat ⇒ ’a where seq ≡ SOME g. iso natLeq |A| g296

lemma seq_iso: iso natLeq |A| seq ...297

The definition of the predicate iso is given in the ordinal library. For our use, it suffices to298

know a few consequences of seq_iso. Most importantly, seq is bijective between N and A:299

lemma seq_bij_betw: bij_betw seq UNIV A300

This means that A has been indexed by N: A = {seq 0 , seq 1 , seq 2 , . . . }. We turn the301

sequence into a sequence of directed subsets of A: Seq 0 ⊆ Seq 1 ⊆ Seq 2 ⊆ . . . ⊆ A.302

fun Seq :: nat ⇒ ’a set where303

Seq 0 = {f {}}304

| Seq (Suc n) = Seq n ∪ {seq n, f (Seq n ∪ {seq n})}305

As Seq is a plain inductive function, it is an easy exercise to formally prove that {Seq n}n∈N306

satisfies the four requirements of Iwamura’s Lemma. A more interesting formalization work307

is in combining with the uncountable case. In Section 3.1, we took Fω ◦ A≺ as the candidate308

of I, which is of type ’a ⇒ ’a set. On the other hand, Seq is of type nat ⇒ ’a set. To match309

the types, we use the inverse seq−1 :: ’a ⇒ nat (inv seq in the standard Isabelle notation)310

of the isomorphism seq. We define the final I as follows:311
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definition I where I ≡ if |A| =o natLeq then Seq ◦ seq−1 else Fω ◦ A≺312

Now we close the locale Iwamura_proof and state the final result in the global scope.313

theorem (in reflexive) Iwamura:314

assumes directed_set A (⊑) and infinite A315

shows ∃I . (∀a ∈ A. directed_set (I a) (⊑) ∧ |I a| <o |A| ) ∧316

monotone_on A (⪯A) (⊆) I ∧
∪

(I‘A) = A317

Proof. Inside the proof we reopen the proof locale:318

interpret Iwamura_proof ...319

By this we obtain I defined above. We conclude by proving that I satisfies the requirements.320

directed_set (I a) (⊑): The uncountable case is by Flim_directed. For the countable case,321

we show that Seq n is directed for every n ∈ N. Note that Seq n can be written X ∪ {f X}322

for appropriate X . Then since f X is an upper bound of X and ⊑ is reflexive, f X serves323

as an upper bound of any (finite) subset of X ∪ {f X}.324

|I a| <o |A|: The uncountable case is by card_uncountable. For countable case, we just325

prove that Seq n is finite for any n ∈ N, by easy induction.326

monotone_on A (⪯A) (⊆) I : The uncountable case is by mono_uncountable. For the327

countable case, we need another consequence of lemma seq_iso:328

lemma inv_seq_mono: monotone_on A (⪯A) (≤) (seq−1) ...329

We then combine with the monotonicity of Seq, which is easily proved by induction.330 ∪
(I ‘ A) = A: The uncountable case is by range_uncountable. For the countable case,331

we need to prove
∪

((Seq ◦ seq−1) ‘ A) = A. The (⊆)-direction is obvious. For the332

other direction, take an arbitrary a ∈ A. We know a = seq (seq−1 a) ∈ Seq n with333

n = Suc (seq−1 a). On the other hand, seq n ∈ A. Hence a ∈ Seq n = Seq (seq−1 (seq334

n)) ⊆
∪

(Seq ◦ seq−1) ‘ A.335

◀336

4 Directed Completeness337

Now we formalize Theorem 1: A quasi-ordered set has a supremum for every directed subset,338

if and only if it does so for every non-empty well-related subset. The statement is slightly339

generalized, so that the underlying order need not be antisymmetric.340

The property that certain class of subsets have suprema is called completeness. We341

formalize completeness as follows:342

definition ... where343

C-complete A (⊑) ≡ ∀X ⊆ A. C X (⊑) −→ (∃s. extreme_bound A (⊑) X s)344

for less_eq (infix ⊑ 50 )345

Using this notation, we can formalize Theorem 1 concisely as follows:346

theorem (in quasi_ordered_set) well_complete_iff_directed_complete:347

(nonempty ⊓ well_related_set)-complete A (⊑) ←→ directed_set-complete A (⊑)348
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where nonempty A ≡ if A = {} then ⊥ else ⊤. For the (←−)-direction we must prove349

that non-empty well-related sets are actually directed. Well-related sets clearly are connex,350

i.e., every two elements are comparable. Under transitivity this is sufficient for directedness,351

but we can actually prove a stronger statement without transitivity: every non-empty finite352

subset X of a well-related set A has a greatest element.353

lemma (in well_related_set) finite_sets_extremed:354

assumes finite X and X ̸= {} and X ⊆ A355

shows extremed X (⊑)356

Proof. By induction on the number2 of elements in the finite set X . As X is nonempty,357

by well-relatedness, it has a least element l. If X − {l} is empty, then l is the greatest in358

X = {l} by reflexivity. Otherwise, by induction hypothesis, X − {l} has a greatest element359

e. As l is least in X and in particular l ⊑ e, e is also greatest in X . ◀360

For the (−→)-direction, we prove the following elaborated statement:361

lemma (in quasi_ordered_set) directed_completeness_lemma:362

assumes (nonempty ⊓ well_related_set)-complete A (⊑)363

and directed_set D (⊑) and D ⊆ A364

shows ∃x. extreme_bound A (⊑) D x365

Proof. We apply induction on the cardinality |D| with respect to <o. To be more precise,366

we are given fresh D for which we must prove ϕ D, where ϕ X denotes367

directed_set X (⊑) =⇒ X ⊆ A =⇒ ∃x. extreme_bound A (⊑) X x368

assuming ϕ D’ for any D’ with |D’ | <o |D|.369

If D is finite, then D has an upper bound of itself, i.e., a greatest element, which serves370

also as a supremum. So suppose that D is infinite. For this D, we apply Iwamura’s Lemma371

and obtain I as follows.372

obtain I where monotone_on D (⪯D) (⊆) I373

and ∀a ∈ D. |I a| <o |D|374

and ∀a ∈ D. directed_set (I a) (⊑)375

and
∪

(I ‘ D) = D ...376

For every d ∈ D, since |I d| <o |D|, induction hypothesis ensures that I d has a supremum377

in A. Thus, using the axiom of choice, we obtain a function s that picks a supremum for378

I d. Note that as we do not assume that ⊑ is antisymmetric, suprema are not unique so the379

axiom of unique choice cannot be used.380

obtain s where d ∈ D =⇒ extreme_bound A (⊑) (I d) (s d) for d ...381

Next we show that (s ‘ D,⊑) is well-related. To this end, we formalized the following382

fact: monotone image of a well-related set is well-related.383

lemma (in well_related_set) monotone_image_well_related:384

fixes leB (infix ⊴ 50 )385

assumes monotone_on A (⊑) (⊴) f shows well_related_set (f ‘ A) (⊴) ...386

2 In Isabelle, card X is used to denote the number of elements in X , assuming that X is finite. In contrast,
|X| is the cardinality in more general sense.
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So now we need that s is monotone from (D,⪯D) to (A,⊑). This follows as I is monotone387

from (D,⪯D) to (Pow D,⊆), and taking suprema is monotone from (Pow D,⊆) to (A,⊑).388

This concludes that (s ‘ D,⊑) is well-related. Since D is infinite and thus non-empty, thanks389

to the completeness assumption we obtain a supremum x of s ‘ D. We conclude by showing390

that x is also a supremum of D.391

To show that x is a bound of D, consider an arbitrary d ∈ D. Since D =
∪

(I ‘ D), we392

obtain d’ ∈ D such that d ∈ I d’ . As s d’ is a supremum of I d’ , we know d ⊑ s d’ . Since393

s d’ ∈ s ‘ D and x is a supremum of s ‘ D, we have s d’ ⊑ x. By transitivity we conclude394

d ⊑ x.395

Finally, let b be another bound of D. For any d ∈ D, since I d ⊆ D, b is a bound of I d.396

Since s d is least among the bounds of I d, we have s d ⊑ b. This shows that b is a bound397

of s ‘ D. Since x is least among the bounds of s ‘ D, we conclude x ⊑ b. ◀398

5 Scott-Continuity399

The previous inductive proof can be strengthened to prove and generalize Theorem 2: A400

function that preserves suprema of well-related subsets also preserves suprema of directed401

subsets, if the domain has a supremum for every nonempty well-related sets. Markowsky402

claimed Theorem 2 [10, Corollary 3], saying briefly that it follows from Iwamura’s Lemma403

and transfinite induction. We did not find it that obvious (at least for mechanization), and404

by completing the proof, we could slightly generalize Markowsky’s claim. Now it works405

for quasi-ordered domain, relaxing antisymmetry; the codomain need not be complete in406

any class, or even transitivity or reflexivity are not necessary; and chains are refined to407

well-related sets.408

Functions that preserve a particular class of suprema are called continuous. We formalize409

the notion in Isabelle as follows:410

definition ... where411

C-continuous A (⊑) B (⊴) f ≡ f ‘ A ⊆ B ∧412

(∀X s. C X (⊑) −→ X ̸= {} −→ X ⊆ A −→413

extreme_bound A (⊑) X s −→ extreme_bound B (⊴) (f ‘ X) (f s))414

for leA (infix ⊑ 50 ) and leB (infix ⊴ 50 )415

A useful fact about continuous functions, is that, under a mild condition on the class C416

– namely, all pairs of related elements are in the class – every C-continuous function is417

monotone:418

lemma (in reflexive) continuous_imp_monotone_on:419

assumes C-continuous A (⊑) B (⊴) f and ∀i ∈ A. ∀ j ∈ A. i ⊑ j −→ C {i,j} (⊑)420

shows monotone_on A (⊑) (⊴) f ...421

This is the case for well_related_set-continuous functions.422

The Isabelle statement of Theorem 2 then becomes:423

theorem (in quasi_ordered_set)424

assumes (nonempty ⊓ well_related_set)-complete A (⊑)425

shows well_related_set-continuous A (⊑) B (⊴) f ←→ directed_set-continuous A (⊑) B426

(⊴) f427

As before, the (←−)-direction is obvious. For the (−→)-direction, our strategy is to prove428

that f preserves the suprema of every directed set, at the same time we construct the suprema429
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in the previous section. Precisely, into the statement of lemma directed_completeness_430

lemma we add the following claim:431

and well_related_set-continuous A (⊑) B (⊴) f =⇒432

D ̸= {} =⇒ extreme_bound A (⊑) D x =⇒ extreme_bound B (⊴) (f ‘ D) (f x)433

Proof. The claim is proved simultaneously with the previous statement by induction on |D|.434

Our new goal is to show, given a supremum x of D in (A,⊑), that f x is a supremum of435

f ‘ D in (B,⊴).436

By monotonicity, f x is a bound of f ‘ D, so we show that it is least of such. Recall that,437

in the previous section, a supremum of D is obtained as a supremum of a well-related set C ,438

where C is a singleton set in the finite case, and is s ‘ D in the infinite case. Note that, as439

we do not assume antisymmetry, this supremum is not necessarily the supremum x we are440

given. Nevertheless, we know that x is also a supremum of C , thanks to the transitivity of441

(A,⊑). As f preserves suprema of well-related sets, we also know that f x is a supremum of442

f ‘ C in (B,⊴). Hence, by showing that any bound b of f ‘ D is also a bound of f ‘ C , we443

can show f x ⊴ b and conclude the proof.444

The finite case is obvious as C ⊆ D. Consider the infinite case: C = s ‘ D. We know that445

b is a bound of f ‘ I d for every d ∈ D, as D =
∪

(I ‘ D). Recall that, in the previous section,446

s d is an inductively obtained supremum of I d. With |I d| <o |D|, by induction hypothesis447

we know that f (s d) is a supremum of f ‘ I d. In particular f (s d) ⊴ b, concluding that b448

is a bound of f ‘ s ‘ D = f ‘ C . ◀449

6 Conclusion450

In this paper, we formalized some results for directed sets: Iwamura’s Lemma to enable451

induction arguments on them; Cohn’s theorem stating the equivalence between directed-452

completeness and well-completeness; and Markowski’s corollary on Scott-continuity being453

equivalent to the preservation of suprema of well-related chains. The proofs involved some454

non-trivial formalization work on transfinite sequences that has been enabled by a careful455

management of locales and contexts, and Isabelle/HOL’s libraries on cardinals and ordinals.456
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